авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Пространственно-временные структуры электромагнитных волн в диспергирующих средах в явлениях самовоздействия, электромагнитно индуцированной прозрачности, тран

-- [ Страница 1 ] --

На правах рукописи

ЖАРОВА Нина Аркадьевна

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ СТРУКТУРЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ДИСПЕРГИРУЮЩИХ СРЕДАХ В ЯВЛЕНИЯХ САМОВОЗДЕЙСТВИЯ,

ЭЛЕКТРОМАГНИТНО ИНДУЦИРОВАННОЙ
ПРОЗРАЧНОСТИ, ТРАНСФОРМАЦИОННОЙ ОПТИКИ

01.04.03 – радиофизика

А в т о р е ф е р а т

диссертации на соискание ученой степени

доктора физико-математических наук

Нижний Новгород – 2011

Работа выполнена в Институте прикладной физики РАН,

г. Нижний Новгород

Официальные
оппоненты:
доктор физико-математических наук
Никитов Сергей Аполлонович доктор физико-математических наук Бакунов Михаил Иванович доктор физико-математических наук
Кочаровский Владимир Владиленович
Ведущая организация: Государственный оптический институт им. С.И. Вавилова (Санкт-Петербург)

Защита состоится "____" июня 2011 г. в _______ час. на заседании диссертационного совета Д 002.69.02 в Институте прикладной физики РАН (603950, г. Нижний Новгород, ул. Ульянова, 46).

С диссертацией можно ознакомиться в библиотеке Института прикладной физики РАН.

Автореферат разослан "____" мая 2011 г.

Ученый секретарь специализированного совета

доктор физико-математических наук,

профессор Ю. В. Чугунов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации.

За последние несколько десятилетий существенно изменилась и расширилась область прикладных исследований взаимодействия электромагнитных волн с веществом, возникли новые концепции и идеи, открылись новые возможности для будущих исследований. Это связано прежде всего с прогрессом в развитии лазерной техники и генерации сверхмощных сверхкоротких электромагнитных импульсов. Современные технологии, использующие методику компрессионного усиления [1], позволяют получить импульсы петаваттной мощности длительностью в несколько периодов лазерного поля.

С ростом интенсивности распространение электромагнитного излучения практически в любой среде становится нелинейным, а при укорочении импульсов наблюдается усиление влияния дисперсии. Дисперсионные эффекты могут приводить к качественным изменениям в нелинейных динамических режимах самовоздействия. Вместо классической самофокусировки [2] сверхкороткий пространственно локализованный импульс испытывает дробление [2*] или коллапс [3]; в среде со слабой линейной дисперсией групповой скорости на фоне самофокусировки может развиваться образование ударной волны. Новые нелинейные режимы самовоздействия [4], такие как временная и пространственная бистабильность [5], генерация структур [6], оптическая турбулентность [7], ударные волны [8] сопровождаются модификацией спектральных характеристик излучения. Исследование различных аспектов этих нелинейных процессов имеет большое прикладное значение, поскольку управление спектральными характеристиками излучения лежит в основе действия широкого класса нелинейных оптических устройств (системы нелинейной адаптивной оптики [9], эффективные компрессоры сверхкоротких импульсов [10], бистабильные и мультистабильные элементы быстродействующих цифровых и аналоговых процессоров [5] и др.).



С уменьшением длительности излучения до значений, меньших характерных времен релаксации возбуждений в атоме, оказывается возможным осуществить квантово-оптические резонансные взаимодействия со средой. С момента первого экспериментального наблюдения квантово-оптические резонансные эффекты интенсивно изучаются в связи с многочисленными приложениями: безынверсное усиление и генерация [11], управление групповой скоростью оптического импульса [12], квантовая оптическая память и квантовые вычисления [13]. Исследование нестационарного нелинейного отклика вещества на импульсное (фемтосекундной длительности) возбуждение [14], которое открывает принципиально новые возможности извлечения информации о положении и структуре спектральных линий, сечениях рассеяния, имеет важные приложения в области спектроскопии. Существенным для приложений является эффект электромагнитно индуцированной прозрачности [15] (ЭИП), который возникает при взаимодействии двухчастотного излучения и ансамбля квантовых систем (среды) с -схемой энергетических уровней. Обычная постановка задачи предполагает распространение слабого (пробного) поля в условиях, когда основные процессы в среде определяются сильным (управляющим) излучением, так что рассматриваемые эффекты считаются линейными по пробному полю. Однако при учете конечной амплитуды пробного излучения возникает вопрос о возможных нелинейных эффектах, влияющих на его распространение. Оказывается, что особенности нелинейной динамики пробного поля определяются нелинейной дисперсией групповой скорости в ЭИП-среде, а для пробного излучения, отстроенного по частоте от центра полосы прозрачности, отклик среды приобретает черты керровской нелинейности [8*,20*]. Нелинейность в эффекте электромагнитно индуцированной прозрачности, определяемая зависимостью групповой скорости пробного излучения от его интенсивности, является существенной для приложений в области квантовой информации. Недавно было продемонстрировано экспериментально [16], что учет нелинейности обеспечивает дополнительную компрессию импульса в трехуровневой среде (в газе рубидия) и, кроме того, может улучшить качество квантовой памяти. В эксперименте [16] нелинейный отклик так же, как и линейное пробное возмущение, запасается в атомной спиновой когерентности и служит дополнительным резервуаром хранения информации.

Дисперсионные свойства среды могут меняться в очень широких пределах. В рамках линейной теории для их описания используют обычно такие (в общем случае тензорные) характеристики, как диэлектрическую и магнитную проницаемости. В спектральном диапазоне вдали от собственных частот среды эти характеристики слабо зависят от частоты поля, что позволяет существенно упростить описание распространения электромагнитных волн в среде, которое сводится к небольшому числу качественно различных эффектов, хорошо изученных и известных специалистам. Однако для частот поля в окрестности собственных частот среды задача изучения распространения волн существенно усложняется. Вследствие резкой и немонотонной зависимости дисперсионных характеристик от частоты число качественно различных эффектов значительно возрастает. Как показала практика последнего десятка лет, далеко не все эти эффекты были хорошо изучены ранее. В течение продолжительного времени целый ряд теоретически возможных ситуаций представлялся достаточно умозрительным, т.к. в природе среды, обладающие соответствующими дисперсионными свойствами, отсутствовали. Прогресс в нанотехнологии вызвал настоящий бум в исследованиях метаматериалов [17-20]. Эти искусственные микроструктурированные материалы обладают уникальными свойствами, недостижимыми для природных сред, что обусловливает совершенно новые и неожиданные области их применения [21,22].

Один из наиболее ярких примеров специфических дисперсионных свойств сред представляют среды с отрицательным преломлением (альтернативное название “левосторонние метаматериалы”, ЛСМ [17,18,23,25]), в которых оказывается возможным распространение обратных электромагнитных волн, то есть волн с противоположными направлениями групповой и фазовой скоростей. Необычные свойства метаматериалов обусловлены резонансным характером взаимодействия излучения с их структурными элементами. В частотном диапазоне вблизи от резонанса оказывается возможно получить такие электродинамические характеристики среды, которые соответствуют одновременно отрицательным значениям диэлектрической и магнитной проницаемости. Первая экспериментальная демонстрация отрицательного преломления в диапазоне Ггц [25] с использованием метаматериалов была осуществлена в 2000 г. и, начиная с этого времени, перспектива достижения одновременно отрицательных значений и была основной целью исследований в области метаматериалов.

Повышенный интерес к ЛСМ в значительной степени обусловлен концепцией совершенной линзы [21], предложенной на основании формального решения идеализированной задачи о формировании изображений с субволновым разрешением. Множество потенциальных приложений этого эффекта, включая нанолитографию, сверхкомпактную запись информации и др., диктует настоятельную необходимость исследования тех проблем, которые возникают при нарушении идеализации рассматриваемой задачи, а также поиска путей их решения. В ходе этих исследований возник другой, возможно, более плодотворный подход к проблеме субволнового изображения, который развивает идею использования в качестве совершенной линзы слоя предельно анизотропного метаматериала [26], и фактически объединяет принцип атомно-силовой микроскопии и концепцию суперлинзы.

Развитие технологии изготовления метаматериалов, обладающих практически произвольными электродинамическими свойствами, инициировало появление нового раздела оптики – «трансформационной оптики», связанной с конструированием уникальных покрытий-«невидимок», обеспечивающих в теоретическом пределе абсолютную электромагнитную маскировку заключенных внутри объектов [22]. На основе идей трансформационной оптики было предложено множество аналогов различных оптических устройств [20]: линзы, концентраторы, разнообразные волноводы, конверторы и др. Идеология трансформационной оптики может применяться в других областях науки, например, в акустике для создания звукоизолирующих покрытий [27], в математическом моделировании распространения электромагнитных волн в различных средах [23*] и др. Чрезвычайно широкая область возможных приложений стимулирует в настоящее время интенсивные экспериментальные и теоретические исследования этого круга вопросов.

Разработки в области метаматериалов, начавшиеся для микроволн, находят продолжение и развитие в оптике [23]. Однако прямой перенос микроволновых структур в оптику не всегда возможен. В микроволновом диапазоне металл можно рассматривать как идеальный проводник, а на более высоких частотах (для инфракрасного излучения и видимого света) проявляются плазменные свойства металла. Оптические аналоги структурных элементов метаматериалов, применяемых в СВЧ диапазоне, основаны на использовании плазмонного резонанса [24], то есть резонансных колебаний заряда в металле. Высокая частота и высокая пространственная локализация плазмонных колебаний определяют перспективу использования оптических плазмонных метаматериалов для создания оптических компьютеров и полностью оптических устройств обработки данных. Уникальные свойства локализованных плазмонов могут представлять интерес для многий приложений. Область возможных применений плазмонных наноразмерных объектов включает создание различных сенсоров, в том числе, биосенсоров, для которых большое значение имеет сильная нелинейность, позволяющая осуществлять тонкую подстройку сенсора.

Очерченный выше круг задач, рассматриваемых в диссертационной работе, демонстрирует несомненную актуальность темы проводимых исследований.

Цели диссертационной работы.

Основными целями диссертации являются разработка и использование математических моделей для изучения особенностей линейных и нелинейных режимов распространения электромагнитных волн в средах с различными типами дисперсии, что включает:

  1. исследование самовоздействия волновых пакетов в нелинейных средах, особенностей самофокусировки, связанных с эффектами линейной и нелинейной дисперсии групповой скорости;
  2. изучение структурных особенностей самовоздействия электромагнитного излучения в режиме электромагнитно индуцированной прозрачности;
  3. исследование особенностей взаимодействия лазерного излучения с многоуровневой резонансной средой, проявляющей свойство электромагнитно индуцированной прозрачности;
  4. исследование линейных и нелинейных режимов распространения электромагнитного излучения в метаматериалах с отрицательным преломлением;
  5. определение фундаментальных пределов разрешения совершенной линзы, связанных с нестационарностью и движением источника излучения;
  6. анализ влияния неидеальности параметров маскирующего покрытия (их отклонения от значений, задаваемых формулами трансформационной оптики) на амплитуду рассеянного излучения и тем самым на степень маскировки.

Научная новизна диссертационной работы.





  • Теоретически предсказан эффект продольного дробления интенсивного сверхкороткого импульса в среде с фокусирующей керровской нелинейностью и нормальной дисперсией групповой скорости, который впоследствии был подтвержден экспериментально.
  • Найден новый класс автомодельных решений нелинейного уравнения Шредингера гиперболического типа - нелинейные «X-волны». Показано, что в ходе самофокусировки X-волн, для которых взаимно компенсируются дифракционные и дисперсионные эффекты, реализуется особенность типа распределенного коллапса.
  • Найдены новые нелинейные режимы самовоздействия волновых структур в среде с нелинейной дисперсией групповой скорости, для которых характерно укручение продольного профиля и образование ударных волн огибающих в условиях поперечного самосжатия волнового пакета.
  • Предложен способ гигантского усиления кубического нелинейного отклика наноструктурированной среды, содержащей сферические слоистые металл-диэлектрические частицы.
  • Предложен новый подход для анализа проблемы электромагнитной маскировки, использующий вместо трудоемкого численного моделирования аналитические выражения для структуры электромагнитных полей в трансформированном пространстве.
  • Предложен новый тип граничных согласующих слоев в численном моделировании, для конструирования которых используются идеология и методы трансформационной оптики.

Научная и практическая значимость.

Выполненные в диссертационной работе исследования широко использовались для интерпретации имеющихся экспериментальных результатов, стимулировали постановку ряда новых экспериментов и представляют интерес для широкого круга приложений.

  • Теоретическое предсказание продольного дробления сверхкороткого импульса в условиях поперечной самофокусировки, представленное в разделе 2.1, а также в публикациях [2*,3*], предшествовало экспериментальным исследованиям [29,30], в которых данный эффект был успешно зафиксирован для фемтосекундного лазерного импульса, распространяющегося в оптическом стекле.
  • Возможность усиления в десятки раз нелинейного отклика среды (раздел 4.5, [26*]) представляет большой практический интерес в области создания полностью оптических устройств для вычислений и обработки информации.
  • Методика, которая предлагается в диссертации для анализа проблемы электромагнитной маскировки и используется при оценке эффективности электромагнитного маскирующего покрытия (раздел 6.1, [21*]), может быть полезна для оптимизации параметров покрытия; она применима также для анализа других устройств трансформационной оптики, таких как делители пучка и концентраторы энергии.
  • Предлагаемый в диссертации способ моделирования неотражающих граничных условий, использующий методы трансформационной оптики (раздел 6.2, [23*]), имеет большое значение для оптимизации различных численных кодов, использующихся при численном моделировании процессов распространения волн в линейных и нелинейных средах.
  • Эффект суперлокализации электрического поля в многослойных наночастицах (раздел 6.3, [25*]) может найти применение при создании различного рода сенсоров.

Апробация работы. Публикации

Диссертация была выполнена в Институте прикладной физики РАН. По теме диссертации опубликовано 26 статей в ведущих отечественных и зарубежных рецензируемых журналах (Письма ЖТФ, Письма ЖЭТФ, ЖЭТФ, Радиофизика, Известия РАН, Optics Express, Journal of modern optics, New Journal of Physics, Applied physics letters, Physical Review~E, Photonics and Nanostructures, Radio Science, Journal of Applied Physics), 10 статей в сборниках трудов конференций. Основные результаты отражены в работах [1*-8*,10*] (глава 2), [8*,15*,16*,18*,19*,20*] (глава 3), [9*,11*,12*,17*,22*,26*] (глава 4), [13*, 14*, 24*] (глава 5), [21*, 23*, 25*] (глава 6).

Изложенные в диссертации результаты обсуждались на семинарах в ИПФ РАН, в Австралийском национальном университете (Канберра
2005 г., 2007 г.), докладывались на 17 российских и международных конференциях [27*-52*]. В частности, это

- Международная рабочая группа Strong Microwaves in Plasmas (Нижний Новгород, 2000 г.)

- Международная конференция “The days of diffraction” (Санкт-Петербург, 2004 г.)

- Международная конференция “CLEO-Europe/EQEC” (Munich, Germany, 2005 г.)

- Международный симпозиум PECS-IV: Int. Symp. Photonic and Electromagnetic Crystal Structures (Крит, Греция, 2005 г.)

- XXVIIIth General Assambly of Int. Union Radio Science (URSI) (New Delhi, India, 2005 г.)

- Международная конференция “Advanced Materials and Nanotechnology” (Queenstown, New Zealand, 2005 г.)

- Международная рабочая группа по антенным технологиям “Small Antennas and Novel Metamaterials” (Сингапур, 2005 г.)

- Международная конференция “Frontiers of Nonlinear Physics” (Нижний Новгород, 2004 г., 2005 г., 2007 г.)

- Международная конференция “Coherent Control of the Fundamental Processes in Optics and X-ray-Optics” (Нижний Новгород, 2006 г.)

- Topical Meeting “Photonic Metamaterials: From Random to Periodic” (META) (Grand Bahama Island, Bahama, 2006 г.)

- Конференция по лазерной физике (Аштарак, Армения, 2007 г.)

- Международный Симпозиум “Нанофизика и Наноэлектроника” (Нижний Новгород, 2007 г., 2010 г.)

- Международная конференция “Metamaterials 2008” (Pamplona, Spain, 2008 г.)

- Международная рабочая группа “Int. Workshop on Optics, Plasmonics and Metamaterials” (Харьков, Украина, 2009 г.)

Личный вклад автора

Работы, составившие содержание диссертации, выполнены соискателем в соавторстве. Автором внесен определяющий вклад в постановку задачи, решение и анализ представленных в публикациях [21*,23*] результатов. Ей же в основном принадлежат идеи работы [12*] и их реализация. Участие в экспериментальных работах [16*,18*,19*] заключалось в разработке численных методов и алгоритмов, моделировании эксперимента, обработке экспериментальных результатов, их обсуждении и сравнении с теоретическим исследованием и компьютерным моделированием. Аналитические результаты, представленные в работах [1*-11*, 13*-15*, 17*, 20*, 22*, 24*-26*], получены на паритетных началах с соавторами. Разработка компьютерных программ и моделирование на основе соответствующих численных кодов выполнены лично автором во всех представленных в диссертации работах.

Структура и объем работы. Диссертация состоит из семи глав (с учетом Введения и Заключения) и списка литературы. Объем диссертации составляет 258 страниц, включая 102 рисунка и список литературы из 225 библиографических наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во ВВЕДЕНИИ (главе 1) обоснована актуальность и практическая значимость представленных в диссертации исследований, приведено краткое содержание каждой главы, даны сведения об апробации работы. Сформулированы защищаемые положения.



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.