авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Возбуждение, распространение и трансформациясейсмоакустических волн на границе разделагазообразной и твердой сред

-- [ Страница 1 ] --

На правах рукописи

Разин Андрей Владимирович

Возбуждение, распространение и трансформация
сейсмоакустических волн на границе раздела
газообразной и твердой сред

01.04.06 – акустика

АВТОРЕФЕРАТ
диссертации на соискание ученой степени
доктора физико-математических наук

Нижний Новгород - 2012

Работа выполнена в федеральном государственном бюджетном
научном учреждении «Научно-исследовательский радиофизический институт» (ФГБНУ НИРФИ) Министерства образования и науки
Российской Федерации, г. Нижний Новгород

Официальные оппоненты:

доктор физико-математических наук

Собисевич Алексей Леонидович

Федеральное государственное бюджетное учреждение науки Институт физики Земли РАН

доктор физико-математических наук, профессор

Ерофеев Владимир Иванович

Нижегородский филиал Федерального государственного бюджетного учреждения науки Института машиноведения им. А. А. Благонравова РАН

доктор физико-математических наук

Вировлянский Анатолий Львович

Федеральное государственное бюджетное учреждение науки Институт прикладной физики РАН

Ведущая организация:

Акустический институт им. академика  Н. Н. Андреева

Защита диссертации состоится « 28 » мая 2012 г. в 14-00 часов на заседании диссертационного совета Д 002.069.01 при Федеральном государственном бюджетном учреждении науки Институте прикладной физики РАН (ИПФ РАН) по адресу: 603950, г. Нижний Новгород, ул. Ульянова, 46.

С диссертацией можно ознакомиться в научно-технической библиотеке ИПФ РАН.

Автореферат разослан «___» апреля 2012 г.

Ученый секретарь

диссертационного совета Д 002.069.01

кандидат физико-математических наук А.И. Малеханов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации. В настоящее время в акустике интенсивно развивается новая область, связанная с совместным изучением сейсмоакустических волновых процессов в жидкостях (или газах) и в контактирующих с ними твердых телах. Исследование сейсмоакустических волн, распространяющихся в системе газ (жидкость) – твердое тело, необходимо для построения моделей литосферно-атмосферно-ионосферно-магнитосферных связей, что является одним из важнейших направлений в геофизике. Интерес к совместному рассмотрению сейсмоакустических волновых процессов, происходящих в различных слоях Земли (твердых, жидких) и ее атмосфере, обусловлен тем, что именно сейсмические и акустические волны распространяются всюду начиная от земного ядра и кончая верхней ионосферой и, тем самым, играют существенную роль в переносе энергии между геосферами. Сейсмоакустические волны в системе Земля – атмосфера и Земля – океан – атмосфера могут возбуждаться при различных процессах естественного или антропогенного характера, сопровождающихся интенсивным энерговыделением. Это могут быть разного рода подвижки поверхности Земли или океанского дна, извержения вулканов, взрывы, сильные удары по поверхности грунта (падение метеоритов), крупные пожары, а также работа мощных технических устройств и механизмов, в частности, сейсмовибраторов. В настоящее время существуют экспериментальные доказательства возможности выхода акустических волн, возбуждаемых находящимися вблизи земной поверхности источниками, в ионосферу (см., например, Кузнецов В.В., Плоткин В.В., Хомутов С.Ю. Акустические и электромагнитные явления в атмосфере при вибросейсмическом зондировании // Докл. РАН. 2000. Т.370. №2. С.243–248).



Целый ряд вопросов, касающихся взаимодействия литосферы и атмосферы Земли посредством волновых процессов, изучен недостаточно полно. В частности, не решены задачи, связанные с расчетами полей и энергетических характеристик сейсмоакустических волн, создаваемых поверхностными и подповерхностными источниками различной физической природы. Не исследованы с достаточной степенью полноты возбуждение акустических волн инфразвуковых частот при сейсмических колебаниях Земли и их выход в верхние слои атмосферы, а также распространение сейсмоакустических волн вдоль земной поверхности. Изучение возбуждения и распространения сейсмоакустических волн в Земле и атмосфере актуально также в связи с разработками методов дистанционного зондирования природных сред с применением искусственных источников сейсмических колебаний, в том числе методов глобального крупномасштабного мониторинга состояния литосферы, океана и атмосферы. Кроме того, проблема описания распространения акустических и упругих волн вблизи границы раздела газ – твердое тело возникает при разработке методов неразрушающего контроля материалов и устройств твердотельной микроэлектроники. Наконец, значительный интерес представляют исследования сейсмоакустических полей различных машин и механизмов с целью создания устройств, оптимальных по виброакустической активности.

Ранее при рассмотрении возбуждения в атмосфере акустических и акустико-гравитационных волн при сейсмических явлениях задавались волновые движения поверхности океана (Бреховских Л. М. Об излучении океанскими волнами инфразвука в атмосферу // Изв. АН СССР. ФАО. 1968. Т. 4. № 4. С. 444-450) или Земли (Голицын Г. С., Кляцкин В. И. Колебания в атмосфере, вызванные движением земной поверхности // Изв. АН СССР. ФАО. 1967. Т. 3. № 10. С. 1044-1052); при этом волновые процессы в указанных средах исключались из рассмотрения.

Важные как для теории волн, так и для практических целей вопросы, связанные с возбуждением и распространением сейсмоакустических волн, возникают уже в рамках наиболее простой модели, когда Земля представляется однородным изотропным идеально упругим полупространством, а атмосфера – однородным газом. Такая модель применима в тех случаях, когда частота волны значительно превышает частоту Вяйсяля–Брента, и влиянием силы тяжести на волновые процессы можно пренебречь. Рассмотрение данной модели целесообразно потому, что в ее рамках удается детально изучить возбуждение и распространение различных типов объемных и поверхностных волн, получить приближенные аналитические выражения для волновых полей и сделать численные оценки энергетических характеристик сейсмоизлучения. Для функций Грина источников различной природы можно получить точные аналитические выражения. Эти результаты необходимы для контроля правильности работы алгоритмов решения более сложных задач расчета гармонических и нестационарных волновых полей в неоднородных средах.

Для моделирования возбуждения акустических волн в атмосфере при сейсмической активности необходимо рассматривать распределенные в пространстве силовые подповерхностные источники, имеющие произвольную зависимость от времени. Для создания направленных сейсмических антенн требуются источники с произвольным распределением усилий по поверхности упругой среды. Это определяет актуальность задач, связанных с возбуждением сеймоакустических волновых полей сложными источниками. Решение подобных задач необходимо также при разработке методов подповерхностной сейсмической локации и неразрушающего контроля материалов, когда рассматривается распространение упругих волн вблизи границы твердого полупространства при наличии в нем подповерхностной неоднородности ограниченных размеров (подповерхностного включения). Для решения обратной задачи, т. е. определения местоположения и восстановления размеров, формы и физических характеристик неоднородности, необходимо детально проанализировать решение прямой задачи, проведя численное моделирование рассеянных полей. Во многих случаях допустимо моделировать «фоновую» среду однородным изотропным упругим полупространством, а лоцируемую неоднородность считать слабоконтрастной (акустические свойства неоднородности мало отличаются от свойств «фоновой» среды). Тогда в первом (борновском) приближении метода возмущений можно считать, что рассеянное поле возбуждается силовыми источниками, распределенными по занятой неоднородностью области твердого тела, причем конфигурация источников и их зависимость от времени определяется формой и внутренней структурой неоднородности и пространственным распределением поля падающей волны. Задача рассеяния, таким образом, сводится к задаче о возбуждении упругих волн в твердом полупространстве зависящими от времени силами, произвольно распределенными внутри твердого тела.

До сих пор в многочисленных работах, посвященных возбуждению сейсмических волн (см., например, Исследование Земли невзрывными сейсмическими источниками: сб. научн. трудов /Ин-т физики Земли АН СССР / Под ред. Николаева А. В., Галкина И. Н. М.: Наука, 1981; Чичинин И. С. Вибрационное излучение сейсмических волн. М.: Недра, 1984. 224 с.; Заславский Ю. М. Излучение сейсмических волн вибрационными источниками. Нижний Новгород: ИПФ РАН, 2007. 200 с. и цитированную в этих монографиях литературу), рассматривались только поверхностные источники вполне определенной формы или простейшие подповерхностные источники типа центра расширения. Кроме того, ранее не учитывалось влияние атмосферы на поля сейсмических волн, так что оставались невыясненными вопросы, связанные с особенностями распространения и энергетических характеристик поверхностных и вытекающих волн.

Значительный интерес представляет также исследование возбуждения упругих волн звуковыми источниками, находящимися в газе (жидкости), граничащем с твердой средой.

Неотъемлемыми свойствами атмосферы являются ее неоднородность и нестационарность, оказывающие существенное влияние на распространение акустических волн. Исследование акустических волновых процессов в атмосфере является в настоящее время важной проблемой, что связано с возрастающим уровнем шумового загрязнения («акустической засоренности») окружающей среды. Практический интерес представляют прогнозы уровней шума, создаваемого на местности промышленными предприятиями, крупными аэропортами, оживленными автострадами и другими интенсивными или действующими в течение длительного времени звуковыми источниками. На слышимость звука существенное влияние оказывают как сейсмоакустические свойства земной поверхности, так и метеорологические факторы. Например, максимальная дальность, на которой может быть принят звуковой сигнал некоторого источника, меняется в течение суток (это связано с временными изменениями градиентов температуры воздуха в приземном слое атмосферы), а также зависит от скорости и направления ветра. Необходимость учета рефракционных эффектов при оценках уровней шума определяют актуальность задачи расчета звуковых полей в неоднородной движущейся атмосфере.

При решении задач зондирования сред необходимо исследовать прохождение упругих волн через области со сложной структурой (группы вкраплений различной формы, скопления дефектов и т. д.) Если внутри рассматриваемой области не представляется возможным описать процесс взаимодействия волн с каждой отдельной неоднородностью, а последние распределены хаотически, то следует использовать статистический подход, считая среду случайно-неоднородной. Рассеянию упругих волн в случайных средах посвящено значительное количество работ, однако использованный в них математический аппарат не позволил получить простых расчетных формул для коэффициентов ослабления полей продольных и поперечных волн при произвольных видах функций корреляции случайных неоднородностей. Недостаточно исследованы процессы трансформации продольных и поперечных волн друг в друга на случайных неоднородностях среды.

Распространение акустических и электромагнитных волн в средах с флуктуирующими параметрами изучено в настоящее время достаточно подробно. В атмосферной акустике одной из ключевых является задача о рассеянии звука в турбулентных потоках воздуха. Для исследования дальнего распространения звука в атмосфере необходимо знать влияние параметров атмосферной турбулентности на затухание звуковой волны.

Таким образом, в настоящее время значительный теоретический и практический интерес представляет проблема возбуждения и распространения сейсмоакустических волн в системе газ (жидкость) – твердое тело, причем для уточнения количественных характеристик волновых полей следует в ряде случаев учитывать наличие в средах случайных неоднородностей.





Целью диссертации является развитие теории возбуждения и распространения акустических и упругих волн (объемных, поверхностных, боковых, вытекающих) при наличии границы раздела газ (жидкость) – твердое тело применительно, главным образом, к системе атмосфера – Земля, теоретические исследования влияния температурной стратификации воздуха и ветра на пространственное распределение звуковых полей, в том числе в атмосферном рефракционном волноводе, а также рассмотрение ряда задач, связанных с рассеянием волн в случайно-неоднородных средах: упругих волн в твердых телах с флуктуирующими параметрами, акустических волн в турбулентной атмосфере и волн на поверхности тяжелой жидкости в бассейне с шероховатым дном. Указанные теоретические исследования волновых процессов включают в себя наряду с аналитическими вычислениями также построение и программную реализацию алгоритмов расчета полей и энергетических характеристик волн.

Методы исследований. Для решения волновых уравнений использовался метод преобразований Фурье с последующим вычислением интегралов Фурье методом стационарной фазы, что дает асимптотики волновых полей на больших по сравнению с длинами волн расстояниях от источника.

Для анализа функций Грина задач о возбуждении сейсмоакустических волн использовались строгие математические методы, основанные на теории аналитических функций комплексной переменной и контурном интегрировании.

Исследование распространения звука в неоднородной движущейся атмосфере выполнено в приближении геометрической акустики. Для численного моделирования рефракционных эффектов применялись методы численного интегрирования и решения алгебраических уравнений.

Распространение волн различной физической природы в случайно-неоднородных средах рассмотрено методом среднего поля.

В диссертации сочетаются аналитические методы исследования с численными, включая разработку необходимого программного обеспечения.

В работе решены следующие основные задачи.

1. Возбуждение упругих волн в однородном изотропном твердом полупространстве и акустических волн в граничащем с ним однородном газе (жидкости) зависящими от времени силами, произвольно распределенными в твердой среде по плоскости, параллельной границе раздела двух сред; расчет полей и энергетических характеристик существующих в данной системе объемных и поверхностных волн для различных конфигураций силовых источников.

2. Рассеяние поверхностной акустической волны Рэлея на неоднородности малых размеров в твердом полупространстве.

3. Вычисление функций Грина задач о возбуждении сейсмоакустических волн силовыми и звуковыми источниками, действующими на границе раздела газ – твердое тело, с использованием теории функций комплексных переменных и контурного интегрирования; получение точных аналитических выражений для волновых полей.

4. Вычисление в приближении геометрической акустики поля точечного гармонического звукового источника в плоскослоистой атмосфере с горизонтальным ветром, разработка алгоритма и компьютерной программы для расчетов звуковых полей в приземном слое атмосферы, в том числе в условиях многолучевого распространения акустических волн в рефракционном волноводе; численное моделирование звукового поля точечного гармонического источника при различных характерных для приземного слоя атмосферы вертикальных профилях температуры воздуха и скорости ветра.

5. Исследование затухания средних полей продольных и поперечных волн в случайно-неоднородной упругой среде, численный расчет коэффициентов затухания средних полей при произвольных соотношениях между длинами волн и радиусами корреляции флуктуаций; анализ особенностей коэффициентов затухания упругих волн с целью установления их связи с характеристиками случайных неоднородностей.

6. Распространение поверхностных гравитационных волн малой амплитуды в бассейнах с одномерными и двумерными шероховатостями дна; вычисление и анализ коэффициентов затухания средних волновых полей в приближении Беркгофа; анализ пределов применимости приближения Беркгофа для решения данной задачи.

Научная новизна

1. Для произвольного распределения зависящих от времени сил, действующих в однородном изотропном твердом полупространстве на плоскости, параллельной его поверхности, которая является границей упругой среды с однородным газом, получены интегральные выражения для полей сейсмоакустических волн. На основе этих выражений для гармонических силовых источников впервые вычислена средняя за период мощность излучения поверхностной волны Стонели. Для случая точеного поверхностного источника, действующего по нормали к границе раздела сред, получены аналитические выражения для парциальных мощностей излучения волны Стонели в газообразном и твердом полупространствах и выполнено количественное исследование этих мощностей.

2. Для случая силовых источников, расположенных на границе раздела однородных газообразного и твердого полупространств и имеющих произвольную зависимость от времени, получено выражение, описывающее энергию волны Стонели, излученную за все время действия источников.

3. Для произвольного распределения гармонических сил, действующих в однородном изотропном твердом полупространстве на плоскости, параллельной его свободной поверхности, впервые вычислены асимптотики полей смещений в дальней зоне в продольной, поперечных (SV- и SH-поляризаций) и рэлеевской волнах. Получены интегральные выражения, описывающие средние за период мощности излучения перечисленных типов волн. Для случая поверхностных силовых источников, имеющих произвольную зависимость от времени, получены интегральные выражения, описывающее энергии перечисленных типов волн, излученные за все время действия источников.

4. Исследовано рассеяние поверхностной волны Рэлея на локальной неоднородности плотности малых по сравнению с длиной волны размеров в твердом полупространстве. Впервые установлены основные закономерности пространственного распределения поля смещений и мощности излучения рассеянной волны Рэлея. Сделан вывод о возможности определения координат подповерхностной неоднородности по особенностям распределения рассеянного поля границе упругой среды.

5. Получены функции Грина задач о действии на границу раздела газ – твердое тело перпендикулярной к ней силы и об отражении и преломлении сферического акустического импульса на этой границе. Подробно исследовано излучение нестационарных сферических и конических волн в газообразной и твердой средах. Для точек, лежащих на проходящей через источник нормали к границе, получены точные аналитические выражения для волновых полей.



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.