авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 |

Лазерные методы получения и осаждения коллоидных систем на поверхность твердых тел

-- [ Страница 1 ] --

На правах рукописи



Антипов Александр Анатольевич

ЛАЗЕРНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ И ОСАЖДЕНИЯ КОЛЛОИДНЫХ СИСТЕМ НА ПОВЕРХНОСТЬ ТВЕРДЫХ ТЕЛ

01.04.21 – Лазерная физика

Автореферат диссертации на соискание ученой степени

кандидата физико-математических наук

Москва – 2013

Работа выполнена в Федеральном бюджетном государственном образовательном учреждении высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» на кафедре физики и прикладной математики.

Научный руководитель:

доктор физико-математических наук, профессор Аракелян Сергей Мартиросович

Официальные оппоненты:

Шафеев Георгий Айратович, доктор физико-математических наук,

Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук, заведующий лабораторией Макрокинетики неравновесных процессов Научного центра волновых исследований

Шкуринов Александр Павлович, кандидат физико-математических наук, Федеральное государственное бюджетное образовательное учреждения высшего профессионального образования "Московский государственный университет имени М.В.Ломоносова", кафедра общей физики и волновых процессов физического факультета, доцент.

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет»

Защита диссертации состоится " 1 " апреля 2013 г. в 15 часов на заседании

диссертационного совета Д002.063.03 при ИОФ РАН по адресу г. Москва 119991, ул. Вавилова, 38.

С диссертацией можно ознакомиться в библиотеке ИОФ РАН.

Автореферат разослан "___" 2013г.

Ученый секретарь

диссертационного совета __________________________/ Воляк Т.Б. /

  1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Диссертационная работа посвящена разработке новых методов получения металлических и полупроводниковых наночастиц в жидкой среде и формированию наноструктурированных тонких пленок на поверхности твердых тел при управляемом непрерывном/квазинепрерывном (I = 105 -106 Вт/см2) и импульсно-периодическом (I > 106Вт/см2) лазерном воздействии на коллоидные растворы. Изучены механизмы формирования как металлических и полупроводниковых наночастиц в жидкой среде, так и механизм получения наноструктурированных тонких пленок из коллоидных систем. Проведено математическое и физическое моделирование наблюдаемых процессов в зависимости от условий эксперимента и разработаны способы управления морфологическими свойствами формируемых наноструктур на основе данных по их диагностике.

Актуальность работы

Наноструктурированные материалы с включениями наночастиц в основную матрицу вещества и/или на поверхность являются перспективными материалами для использования в различных областях наноэлектроники и фотоники в качестве термоэлектрических элементов, детекторов, источников излучения, элементов памяти, солнечных батарей и т.д. Физико-химические свойства таких материалов зависят от размера включенных наночастиц, их расположения, что позволяет управлять их свойствами.



Не менее важной задачей является управляемое размещение наноразмерных элементов на поверхности (как проводящей, так и диэлектрической) твердой подложки. Существующие методы прецизионного /поатомного переноса вещества технологически сложны и дороги (молекулярно-лучевая эпитаксия, атомная литография, атомно-силовые методы). Более того, они сильно лимитированы при выборе рабочего материала.

В связи с этими двумя факторами методы лазерного управляемого синтеза наноструктурированных поверхностей (тонкие пленки, поверхность твердого тела) являются одними из наиболее быстро развивающихся инструментов современных наноэлектроники и фотоники, позволяющих получать широкий класс наноструктурированных материалов с требуемой топологией расположения наночастиц благодаря соответствующей траектории движения лазерного луча по поверхности подложки. Однако наиболее распространенные методы лазерного осаждения наночастиц, такие как LDMS – laser deposition of metals from solutions, LIFT – laser-induced forward transfer, LCVD – laser chemical vacuum deposition и др. позволяют получать только пленки металлических частиц (в основном меди и золота).

Поэтому исследование и разработка новых подходов и методов в решении задач по равномерному формированию наноструктурированных покрытий при локальном лазерном воздействии является актуальной задачей для разработки новых физических принципов создания современной элементной базы наноэлектроники, фотоники и оптотехники.

Целью работы является получение наноструктурированных пленок и покрытий с управляемой морфологией на поверхности проводящих и диэлектрических материалов при лазерном осаждении наночастиц из коллоидных систем.

Задачи исследования

  1. Разработка новых физических принципов управляемого лазерного синтеза металлических и полупроводниковых наночастиц.
  2. Реализация схемы получения наноструктурированных тонких пленок при управляемом лазерном воздействии на подложку, помещенную в коллоидный раствор.

Методы исследования. В работе использованы современные методы лазерного получения и осаждения различных материалов на твердые подложки, а также методы проведения диагностики получаемых наноструктур с помощью атомно-силовой и растровой электронной микроскопии (АСМ и РЭМ, соответственно), рентгеноспектрального анализа элементного состава, лазерного анализатора размера частиц и др. Выполнено математическое моделирование процессов формирования наноструктур на основе молекулярно-кинетических подходов.

Научная новизна работы

  1. Получены ансамбли наночастиц металлов/оксидов металлов с узким статистическим распределением по размерам при непрерывном лазерном воздействии ближнего ИК-диапазона на массивную мишень, помещенную в жидкую среду.
  2. Впервые реализованы эксперименты по управляемому осаждению смесей из коллоидных систем при лазерном воздействии.
  3. Предложен оригинальный лазерный метод двустадийного формирования полупроводниковых пленок халькогенидов свинца.
  4. Определены особенности морфологии осажденного с помощью лазерного излучения слоя из коллоидных растворов на проводящую и диэлектрическую твердые подложки.

Основные положения, выносимые на защиту

  1. Метод лазерной абляции металлов в жидкости при воздействии непрерывного лазерного излучения с длиной волны 1.06 мкм интенсивностью 105 Вт/см2 позволяет получать изолированные наночастицы (кластеры) металлов и их оксидов с размерами 10-30 нм с отклонением от среднего размера не более 15%.
  2. Импульсное лазерное осаждение наночастиц из коллоидных систем позволяет формировать протяженные массивы наноструктур с шириной от 30 до 100 мкм произвольной длины и формы на поверхности проводящих и диэлектрических подложек в соответствии с траекторией движения лазерного пучка.
  3. При воздействии непрерывного лазерного излучения (длина волны =1.06 мкм, интенсивность 104–105 Вт/см2) на полупроводниковый кристалл возможно формирование полупроводниковых наночастиц (кластеров) с бимодальным распределением по размерам (100-500 нм) и квантовых точек (с размерами 8-30 нм) халькогенидов свинца как на поверхности полупроводниковой пленки, так и непосредственно в жидкой среде.

Практическая значимость работы

  1. Коллоидные растворы наночастиц металлов и их оксидов позволяют получать наноструктуры с управляемой топологией при воздействии лазерного излучения, которые могут использоваться в качестве катализаторов и биосенсоров, в т.ч. в медицине и биологии.
  2. Протяженные массивы наноструктур с высоким показателем адгезии на диэлектрических подложках, полученные в лазерном эксперименте с коллоидными системами, представляют интерес для разработки устройств микро- и наноэлектроники и фотоники нового поколения.
  3. Квантовые точки, образующиеся при лазерной абляции полупроводниковых материалов в коллоидных системах, для которых существенны квантовые эффекты, перспективны для широкого применения в качестве традиционных люминофоров, в дисплеях, а также в лазерах на квантовых точках и при разработке элементов для передачи квантовой/оптической информации.

Апробация работы. Основные результаты работы опубликованы в научных журналах «Квантовая электроника», «Physics Procedia», а также неоднократно докладывались на профильных международных конференциях: LANE’2010 (г. Эрланген, Германия, 2010 г.), ICONO/LAT’2010 (г. Казань, 2010 г.), конференции «Оптика-2010» (г. Санкт – Петербург, Россия, 2010), X, XI, XII научных конференциях «Физико-химические процессы при селекции атомов и молекул» (г. Звенигород, 2008, 2009, 2010 годы соответственно), ILLA-2009 (г. Смолян, Болгария, 2009 г.), конференции «Углерод: фундаментальные проблемы науки, материаловедение, технология. Конструкционные и функциональные материалы и технологии их производства», (г. Троицк, 2009 г. и г. Владимир, 2010 г.), конференции «Функциональные наноматериалы и высокочистые вещества» (г. Суздаль, 2010 г.), International Conference Fundamentals of Laser Assisted Micro–and Nanotechnologies – FLAMN-10 ( St. Petersburg, 2010 г.), 14th International Conference on Laser Optics «LO-2010» (St. Petersburg, 2010 г.), 3-ей конференции/ молодежной школы семинара «Современные нанотехнологии и нанофотоника для науки и производства» (г. Владимир, 2010 г.), XIX научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2012» (г. Москва, 2012г.), 2-ой конференции «International Conference on Modern Problems in the Physics of Surfaces and Nanostructures» – ICMPSN-2012 (г. Ярославль, 2012 г.) и на всероссийских конференциях: Третьей школе-семинаре студентов, аспирантов и молодых ученых по направлению «Наноинженерия» (г. Москва-Калуга, 2010 г.), IV,V конференции аспирантов и молодых ученых «Вооружение. Технология. Безопасность. Управление» (г. Ковров, 2009, 2010 годы соответственно), V научной конференции молодых ученых «Жидкие кристаллы и наноматериалы» ( г. Иваново, 2010 г.).

Публикации. Всего опубликовано 60 работ, из которых 9 статей, 48 тезисов докладов и 2 патента. По материалам диссертации в журналах, рекомендованных ВАК, опубликовано 9 статей. Список публикаций приведен в конце автореферата.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка литературы из 129 наименований, включая работы автора. Материал диссертации изложен на 121 страницах, которые содержат 32 рисунка.

Каждая глава диссертационной работы начинается с краткого введения и заканчивается обсуждением и выводами по главе.

Личный вклад автора состоит в самостоятельном проведении всех экспериментов, а также в участии в обсуждениях на всех этапах работы как при постановке задач исследований, так и при их реализации и интерпретации полученных результатов совместно с соавторами.

  1. Содержание диссертации

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи работы, определена методическая основа исследований, изложена научная новизна и практическая ценность полученных результатов, приведены основные положения, выносимые на защиту, и дано краткое содержание работы по главам.

В первой главе дается краткий обзор научной литературы по современному состоянию дел в исследуемой области, рассмотрены основные понятия и проанализированы принципиальные способы получения наночастиц и методы формирования наноструктурированных покрытий. Рассмотрены особенности получения наноструктурированных тонких пленок в различных схемах реализации лазерного эксперимента, а также описаны свойства полупроводниковых систем А4В6 как базовых материалов для лазерного синтеза твердотельных полупроводниковых структур с квантовыми точками.





Во второй главе приводятся результаты оригинальных экспериментов по получению наночастиц различных металлов при воздействии лазерного излучения на массивные образцы материалов, помещенных в жидкость. Рассмотрены два сценария лазерной абляции металла в жидкости с образованием коллоидных систем с наночастицами. Первый сценарий – оптический пробой и возникновение плазменного факела на границе раздела (облучаемая мишень-жидкость). Такое образование наночастиц подобно процессу образования наночастиц в газе, т.е. наночастицы возникают вследствие столкновения молекул вещества мишени друг с другом в процессе адиабатического расширения и рекомбинации плазменного факела [1]. Второй сценарий – образование парового облака на границе раздела мишень-жидкость без образования оптического пробоя. В этом случае происходит постепенный нагрев поверхности мишени, и испаряемый материал с мишени испытывает столкновения с молекулами окружающей мишень жидкости. В такой системе наночастицы материала могут повторно попадать под влияние лазерного излучения вследствие медленного конвективного движения жидкости. Такое повторное облучение наночастиц приводит к изменению их размера [2].

Мишенями являлись образцы никеля (Ni), меди (Cu), титана (Ti). Выбор материала мишеней был обусловлен высокой значимостью в фундаментальном аспекте их физико-химических свойств и перспективностью использования наночастиц данных металлов в различных приложениях. В табл. 1 приведен перечень используемых в нашем эксперименте источников лазерного излучения.

Таблица 1. Используемые источники лазерного излучения
п/п Тип излучения Тип лазера (активная среда) Источник накачки Длина волны излучения, Средняя мощность Длит. импульса Частота повторения импульсов Качество пучка, М2
1 Непрерывное Иттербиевый волоконный лазер, Yb+ Диод 1.06 мкм от 1 до 200 Вт 1.05
2 Импульсно-периодическое Иттербиевый волоконный лазер, Yb+ Диод 1.06 мкм от 1 до 10 Вт 100 нс от 20 до 100 кГц 1.05
3 Импульсно-периодическое Титан-сапфировый фемтосекундный лазер, Ti:Sp Лазер Nd:YLF на =527 нм 0.8 мкм 0.87 Вт 50 фс 100 Гц/ 1 кГц 1.2


Pages:   || 2 | 3 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.