авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |

Механизмы образования и взаимодействий углеродных нанокластеров

-- [ Страница 1 ] --

На правах рукописи

РЯБЕНКО Александр Георгиевич

МЕХАНИЗМЫ ОБРАЗОВАНИЯ И ВЗАИМОДЕЙСТВИЙ

УГЛЕРОДНЫХ НАНОКЛАСТЕРОВ

01.04.17 – химическая физика, в том числе физика горения и взрыва

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Черноголовка 2008

Работа выполнена в Институте проблем химической физики РАН

Официальные оппоненты:

доктор физико-математических наук Окотруб Александр Владимирович,

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

доктор физико-математических наук

Чернозатонский Леонид Александрович, Институт биохимической физики РАН, Москва

доктор физико-математических наук Далидчик Федор Иванович

Институт химической физики РАН, Москва.

Ведущая организация:

Физико-технический институт им Иоффе РАН, Санкт-Петербург

Предполагаемая дата защиты 22 января 2009г. в 10:00 на заседании диссертационного совета Д 002.082.01 при Институте проблем химической физики РАН по адресу: 142432, Московская обл., г. Черноголовка, проспект академика Семенова, д. 1 (корпус общего назначения ИПХФ РАН).

С диссертацией можно ознакомиться в библиотеке ИПХФ РАН.

Автореферат разослан " " 2008 г.

Ученый секретарь

диссертационного совета
кандидат физ-мат. наук Безручко Галина Сергеевна.

© Рябенко А.Г., 2008

© Институт проблем химической физики РАН, 2008

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

Открытие фуллеренов в 1985 году вызвало огромный интерес в научном сообществе, и с этого момента углеродные наночастицы привлекают к себе все большее и большее внимание. Несмотря на то, что с момента открытия фуллеренов прошло уже более 20 лет, механизм образования фуллеренов до сих пор остается не до конца ясным. Прежде всего, не ясен механизм релаксации избыточной внутренней энергии промежуточных частиц, образующихся в процессе конденсации углеродного пара и роль этой неравновесности в механизме образования фуллеренов и нанотрубок.

В последние годы, наряду с бурным развитием химии фуллеренов, повышенный интерес вызывают одномерные углеродные структуры – нанотрубки и нанонити, что обусловлено их уникальными прочностными и электронными свойствами. Высока перспективность их применения в качестве армирующих и проводящих наполнителей в полимерных композитах, в светопреобразующих и светоизлучающих элементах, в электродах топливных и электрохимических источников тока, в качестве полевых эмиттеров электронов, в качестве нанопроводников и элементов транзисторов, в качестве нанореакторов и нанокапсул для медицинских препаратов. Эти углеродные наночастицы чрезвычайно интересны с точки зрения фундаментальной науки, поскольку в них самым ярким образом проявляются качественно новые свойства, обусловленные наноразмерами. Особенный интерес вызывают одностенные углеродные нанотрубки (ОУНТ), поскольку каждая отдельная нанотрубка является объектом, обладающим одновременно свойствами полисопряженной молекулы полимера и кристаллической структуры.



Данное исследование направлено на решение фундаментальных проблем взаимодействий углеродных нанокластеров, связанных с элементарными реакциями с их участием. Отличительной особенностью данной работы является рассмотрение этих взаимодействий с учетом колебательно-поступательной неравновесности, возникающей при конденсации углеродного пара в электродуговом реакторе, и комплексный анализ влияния различных взаимодействий на спектральные свойства одностенных углеродных нанотрубок. Исследование оптических свойств ОУНТ имеет большое фундаментальное значение, поскольку их спектры принципиальным образом отличаются от спектров обычных углеродных материалов.

Следует отметить, что в настоящее время самым серьезным препятствием для различных технических применений нанотрубок является их агломерация. В связи с этим, исследования влияния Ван-дер-Ваальсовых взаимодействий на оптические свойства ОУНТ имеют также и прикладную значимость, поскольку они позволяют разработать методы измерения этой агломерации.

Актуальность данной работы подтверждается тем фактом, что она была поддержана Российской академией наук (программа отделения РАН "Химия и физикохимия супрамолекулярных систем и атомных кластеров", Программа РАН «Синтез, структура, свойства углеродных наноструктур и их практические приложения для информационных технологий», «Низкоразмерные гетероструктуры на основе фуллеренов и углеродных нанотрубок, электронные устройства на их основе (2003), Комплексная программа Президиума Российской академии наук "Фундаментальные проблемы физики и химии наноразмерных систем и наноматериалов" (2004): “Синтез, структура, свойства углеродных наноструктур и их практические приложения для информационных технологий”, Комплексная программа Президиума Российской академии наук "Фундаментальные проблемы физики и химии наноразмерных систем и наноматериалов" (2005); работа неоднократно поддерживалась РФФИ - проекты: 96-03-33580 “Препаративное хроматографическое выделение и количественный спектрофотометрический анализ высших фуллеренов с применением факторного анализа и методов распознавания образов”, 00-03-32933 “Исследование роли процессов внутренней трансформации и релаксации энергии промежуточных частиц в механизме образования фуллеренов и одностенных нанотрубок”, 01-03-97004 Перенос заряда в механизме роста углеродных нанотрубок при химическом газофазном осаждении, 04-03-97200 Исследование механизма радиационно инициируемых реакций прививки на поверхности одностенных углеродных нанотруб, 05-03-32743 Антенный эффект в фото-физических и фото-химических взаимодействиях углеродных нанотрубок. 03-03-32251, Взаимодействие полианилина с углеродными наночастицами с разной кривизной поверхности, 03-03-96404- Получение и физико-химические свойства гетероструктур на основе полупроводниковых твердых растворов и одностенных углеродных нанотрубок.

Цель и задачи исследования.

Целью работы являлось установление общих закономерностей в элементарных реакциях и в различных взаимодействиях углеродных нанокластеров как между собой, так и с другими молекулами.

В исследованиях реакций с участием фуллеренов исходным тезисом было предположение, что поскольку каждый элементарный акт слияния углеродных частиц экзотермичен, это должно приводить к неравновесному колебательному возбуждению образующихся промежуточных продуктов. Поэтому целью этих исследований было установление роли этой неравновесности во взаимодействиях промежуточных “горячих” фуллеренов, как между собой, так и с другими частицами.

В исследованиях взаимодействий нанотрубок целью работы было установление закономерностей во влиянии на их оптические свойства как внутренних, так и внешних Ван-дер-Ваальсовых взаимодействий, процессов переноса заряда и химических модификаций стенок нанотрубок.

Для достижения этих целей предполагалось решить следующие задачи:

1. выявить общие закономерности во влиянии условий синтеза на такую фундаментальную характеристику процесса, как относительное содержание различных фуллеренов, и определить вещества, которые обуславливали наблюдаемое изменение спектров поглощения экстрактов;

2. исследовать экспериментально реакции “горячих” фуллеренов С60, С70, С78, С84, и квантовохимически - реакцию С60+С2;

3. определить роль атомов металлов в процессе образования зародышей углеродных нанотрубок;

4. определить роль процесса растворения углерода и процесса его выделения на различных гранях каталитической частицы никеля в процессе роста углеродной нити;

5. исследовать влияние внешних Ван-дер-Ваальсовых и химических взаимодействий на спектры одностенных углеродных нанотрубок и разработать на базе этих данных методику количественного определения содержания нанотрубок в саже;

6. исследовать влияние внутренних Ван-дер-Ваальсовых взаимодействий на спектральные свойства нанотрубок и их агломерацию;

7. уточнить квантовохимическими расчетами длину С-С связи в нанотрубках;

8. исследовать возможность уменьшения степени агломерации нанотрубок посредством радиационно-стимулированной ковалентной модификации стенок нанотрубок и за счет нековалентного взаимодействия нанотрубок с молекулами полисопряженных полимеров.

Научная новизна.

Впервые было показано, что:

  1. Относительное содержание фуллеренов, вымываемых толуолом из сажи электродугового реактора, в ряду С60, С70, C76, С78, С84, слабо зависит от условий синтеза, хотя суммарное вымываемое количество этих фуллеренов может меняться более чем в 10 раз. При этом увеличение числа столкновений в зоне конденсации углеродного пара приводит к увеличению абсолютного содержания тяжелых фуллеренов с массой более 1400.
  2. Избыточная внутренняя энергия не препятствует слиянию легких «горячих» фуллеренов С60, С70, C76, С78, С84,. Вероятность слияния фуллеренов растет с увеличением массы в ряду С60, С70, C76, С78, С84. В то же время в масс-спектрах нет никаких признаков последовательного присоединения нескольких частиц С2 к каркасу фуллеренов.
  3. Одним из каналов сброса избыточной энергии образующихся больших >C120 сферических оболочек (тяжелых «горячих» фуллеренов) является их развал с преимущественным образованием самых стабильных фуллеренов С60 и С70.
  4. Впервые был проведен исчерпывающий квантовохимический анализ всех возможных каналов внедрения С2 в каркас фуллерена С60 и показано, что эта реакция затруднена конкуренцией с обратной реакцией.
  5. Впервые показано, что при использовании разных биметаллических катализаторов, набор типов образующихся в электродуговом реакторе нанотрубок остается неизменным; меняется только их относительное содержание.
  6. Впервые были обнаружены автоколебания в процессе роста углеродной нити из никелевой каталитической частицы.
  7. Впервые была обоснована методика выделения нанотрубок из сажи центрифугированием, и исследована форма фонового спектра оптического поглощения саж, содержащих нанотрубки, впервые был предложен метод определения абсолютного весового содержания нанотрубок в саже.
  8. При исследовании заполненных фуллеренами нанотрубок впервые были обнаружены следующие эффекты:

а) Расширение электронной оболочки тонких (d<1.3нм) нанотрубок и стягивание электронной структуры толстых (d>1.4нм) нанотрубок внутренними фуллеренами.

б). Ослабление внешнего Ван-дер-Ваальсового взаимодействия между нанотрубками в связках при заполнении нанотрубок фуллеренами.

в). Подавление люминесценции полупроводниковых нанотрубок внутренней нанотрубкой.

г). Полное экранирование спектра поглощения внутренней трубки внешней трубкой и сильное ослабление спектра поглощения внутренних фуллеренов.

9. Впервые были обнаружены спектральные признаки образования комплексов с переносом заряда при взаимодействии молекул полисопряженных полимеров с одностенными углеродными нанотрубками.

10. Впервые было обнаружено каталитическое ускорение радиационно-стимулированных реакций сшивки молекул поверхностно активного вещества поверхностью нанотрубки в водных взвесях.

Научная и практическая значимость работы. Электродуговой метод получения фуллеренов является в настоящее время единственным способом их получения в количествах, достаточных для практических нужд. Проведенные исследования дают границы потенциальных возможностей этого метода, в частности, доказывают бесперспективность попыток повышения относительного выхода фуллеренов С70, C76, С78, С84. Показано, что предположение о важности учета избытка внутренней энергии у углеродных кластеров в электродуговом реакторе приводит к новой точке зрения на механизм образования фуллеренов, которая позволяет объяснить ряд фактов, не нашедших ранее объяснения, а именно: отсутствие в продуктах кластеров промежуточных масс (от 360 до 720 а.е.) и постоянство относительного содержания фуллеренов С60, С70, C76, С78, С84.





Следует отметить, что появившаяся в 2006 году работа Морокумы [1] подтверждает сделанный в работе вывод о ключевой роли больших замкнутых углеродных оболочек в механизме образования фуллеренов. В этой работе компьютерным моделированием процесса конденсации показано, что в результате столкновений большого числа частиц С2 образуются большие замкнутые оболочки, а в 2007 году экспериментально был обнаружен процесс превращения этих больших замкнутых оболочек в обычные (легкие) фуллерены.

Исследования оптических свойств одностенных углеродных нанотрубок позволили разработать уникальную методику измерения абсолютного содержания нанотрубок в образце. Исследования изменчивости спектров нанотрубок в зависимости от степени их агломерации, совершенства структуры, взаимодействий с другими молекулами окружающей среды позволили обосновать эффективность спектроскопии в качестве инструмента диагностики электронных состояний нанотрубок и их качества. В отличие от электронной микроскопии, которая дает информацию о ничтожной доле образца, спектрофотометрия позволяет охарактеризовать весь образец, и в настоящее время нет более надежной и точной методики определения содержания нанотрубок в саже.

Исследования радиационно-стимулированных реакций на поверхности нанотрубок показали, что в воде нанотрубки обладают высокой радиационной стойкостью, а молекулы ПАВ, окружающие нанотрубку, под действием гамма излучения сшиваются, образуя мохообразное покрытие. Показано, что поверхность нанотрубки каталитически ускоряет процессы сшивки, и высказано предположение, что это обусловлено организацией молекул на наноразмерной поверхности.

Личный вклад автора. Все включенные в диссертацию результаты получены лично автором или при его непосредственном участии. Автор был руководителем проектов РФФИ 96-03-33580, 00-03-32933, 01-03-97004, 04-03-97200, 05-03-32743, в рамках которых были выполнена основная часть работы и на средства которых привлекались сотрудники из других институтов. Автором обоснованы и поставлены задачи исследования, определены подходы к их решению, разработаны методики проведения исследований и процедуры обработки экспериментальных данных, интерпретированы все полученные результаты. Масс-спектральные исследования проводились совместно с Есиповым С.Е. и Козловским В.И., квантовохимическое моделирование с Будыкой М.Ф. и Зюбиной Т.С., синтез фуллеренов проводился Моравским А.П. и Мурадяном В.Е, синтез нанотрубок Крестининым А.В., электронная микроскопия Киселевым Н.А. и Жигалиной О.М., спектры комбинационного рассеяния снимались Мороз Т.Н. и Букаловым С.С., за что автор выражает им свою благодарность.

Апробация результатов диссертации. Список тезисов докладов на конференциях представлен в конце реферата. (35 тезисов)

Публикации по теме Общее число публикаций в рецензируемых изданиях по теме диссертации (без учета тезисов докладов на конференциях, отчетов и других материалов служебного пользования) 23 статьи.

Диссертация содержит 172 рисунка и 17 таблиц, в списке литературы 358 ссылок. Диссертация состоит из 8 глав. Общий объем диссертации 344 страницы.

СОДЕРЖАНИЕ РАБОТЫ

В общем введении обоснована актуальность темы, определены цели исследования, сформулированы результаты, отражающие научную новизну, практическую и научную значимость работы.

В главе 1 дан литературный обзор, который состоит из трех частей. В первой части дается обзор моделей образования фуллеренов в рамках тех аспектов, которые имеют отношение к заявленной теме преобразования энергии в этой сложной системе конденсирующегося углеродного пара. Отмечено, что в подавляющей массе опубликованных до настоящего времени работ, в которых предпринимались попытки описать механизм образования фуллеренов, рассматриваются промежуточные частицы в “холодном” состоянии. Однако это представление совсем не обосновано.

Действительно, при электродуговом синтезе в промежутке между графитовыми электродами объемом примерно 0.2 см3 выделяется мощность ~10 кВт. Углеродный пар с начальной температурой 4000 – 5000°C расширяется в атмосфере гелия со средней температурой ~600 K. Процесс конденсации углеродного пара идет в направлении от мелких частиц к крупным, и каждый акт слияния более мелких частиц приводит к выделению энергии (от 100 до 200 ккал/моль). Эта энергия конденсации выделяется в виде колебательной энергии образующихся кластеров с последующей передачей ее в окружающую среду в поступательные степени свободы атомов гелия. Поэтому колебательная температура углеродных частиц должна быть выше поступательной температуры гелия.

В отношении уже сформировавшихся фуллеренов в литературе господствовало убеждение, что они растут посредством внедрения в них мелких частиц С2, С3. Однако в продуктах конденсации углеродного пара всегда наблюдалось удивительное отсутствие кластеров промежуточных масс (от С30 до С60) См. рис. 1. Следовательно, кластеры с массами больше С30 (которые энергетически должны преимущественно образовывать сферические оболочки), вступают в реакции существенно отличным образом, чем линейные цепочки.

 Рис 1. Масс-спектры лазерной десорбции саж-0

Рис 1. Масс-спектры лазерной десорбции саж из электродугового реактора - масс-спектр остывших продуктов. На вставке один из первых масс-спектров, полученных Smalley (спектр из нобелевских лекций) – спектр горячих продуктов конденсации в установке Smalley.

Наши усилия были сосредоточены на исследовании именно этой стадии роста углеродных кластеров, когда в реакторе образовались первые сферические оболочки. Первой попыткой понять процесс роста сферических оболочек на примере С60 были спектрофотометрические исследования влияния условий синтеза (в частности давления гелия) на содержание более тяжелых, чем С60 фуллеренов (С70, С76, С84) в получающейся саже. В научном сообществе в то время наблюдался повышенный интерес к этим фуллеренам, и поэтому многим хотелось увеличить их содержание в саже. Однако в момент постановки этой задачи спектры поглощения высших фуллеренов (С76, С78, С84 ) не были известны. Единственной возможностью решить ее было применение статистических методов.

Второй раздел обзора посвящен работам связанным с одномерными углеродными наноструктурами. Рассматриваются методы получения этих структур, предложенные механизмы их образования, их оптические свойства.

Третий раздел литературного обзора посвящен статистическим методам обработки спектральных данных. Изложены основы анализа главных компонент - методы вычислений сингулярных векторов, методика установления числа физических факторов, определяющих изменчивость данных, и основы линейного дискриминантного анализа.

Основные принципы представления спектров в сингулярном базисе представлены на рис. 2.

 Рис 2. Иллюстрация физического-1



Pages:   || 2 | 3 | 4 | 5 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.