авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Теория излучательных и безызлучательных переходов в оптических центрах в объемных и наноразмерных кристаллах

-- [ Страница 1 ] --

на правах рукописи

Пухов Константин Константинович

теория Излучательных и безызлучательных переходов в оптических центрах в объемных и наноразмерных кристаллах

01.04.21 – лазерная физика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Москва - 2011

Работа выполнена в Институте общей физики им. А. М. Прохорова РАН

Научный консультант:

доктор физико-математических наук, профессор, член-корреспондент РАН

Басиев Тасолтан Тазретович.

Официальные оппоненты:

доктор физико-математических наук, профессор

Бодунов Евгений Николаевич, Петербургский государственный университет путей сообщения

доктор физико-математических наук, профессор

Смирнов Валерий Алексеевич, Институт общей физики им. А. М. Прохорова РАН

доктор физико-математических наук, профессор

Трифонов Евгений Дмитриевич, Российский государственный педагогический университет им. А.И. Герцена.

Ведущая организация: Физико-технический институт имени А.Ф. Иоффе РАН.

Защита диссертации состоится 30 мая 2011 года в 15 часов на заседании диссертационного совета Д002.063.02 при Институте общей физики им. А. М. Прохорова РАН по адресу: 119991, ГСП-1, Москва, ул. Вавилова, 38, корпус 1, конференц-зал.

С диссертацией можно ознакомиться в библиотеке Института общей физики им. А. М. Прохорова РАН.

Автореферат разослан « » апреля 2011 г.

Ученый секретарь Макаров В. П.

диссертационного совета Тел. (499) 503-83-94

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы.

Диссертация посвящена теоретическому исследованию излучательных и безызлучательных процессов в лазерных и люминесцирующих оптических центрах (ОЦ) малого радиуса в твердых диэлектриках. Широкое применение лазеров и лазерных систем в различных областях фундаментальных и прикладных научных исследований, в технологических процессах наукоемких производств и медицине диктует поиск новых эффективных лазерных сред, позволяющих расширить функциональные возможности лазеров и лазерных систем. Проблема излучательных и безызлучательных процессов в активированной среде относится к фундаментальным проблемам лазерной физики, теории твердого тела и теории взаимодействия излучения с веществом и имеет большое практическое значение. Скорости излучательных и безызлучательных переходов (БП) в лазерных ионах определяют ряд основных характеристик активных элементов, таких как инверсная заселенность, сечения переходов, времена жизни рабочих уровней, пороговые значения генерации и др., определяя, в конечном итоге, эффективность работы лазеров. Понимание физики этих процессов и разработка их теории является базой для развития физических методов управления свойствами и параметрами лазерного излучения. В общеизвестной теории многофононных процессов [1-12] вероятности переходов критическим образом зависят от параметра электрон-фононной связи (ЭФС) S и стремятся к нулю при S0. (Значение параметра S определяется относительным сдвигом равновесных положений ядер решетки при электронном переходе; S = 2 в одночастотной модели колебаний кристалла.) Кристаллы, активированные трехвалентными редкоземельными (РЗ) ионами, широко применяемые как активные элементы кристаллических лазеров, относятся к системам с экстремально слабой ЭФС (S <<1), к которым неприменима стандартная теория многофононных переходов. Т.о., актуальной является проблема построения теории многофононных переходов для систем с предельно слабой ЭФС, которой посвящены главы 2-4 работы. Главы 2 и 3 посвящены нелинейной теории многофононных безызлучательных переходов. В разработанной теории вероятности многофононных БП остаются конечными и при S = 0. Полученные результаты особенно актуальны для поиска новых эффективных лазерных сред ИК диапазона, минимизации тепловыделения в объеме активных элементов мощных киловаттных лазеров, поиска новых схем лазерного охлаждения твердых тел.



Четвертая глава посвящены нелинейной теории оптических многофононных (ОМФ) переходов. Ввиду трудности обнаружения ОМФ переходов в системах с предельно слабой ЭФС, в литературе им уделяется значительно меньше внимания, чем многофононным БП. Вместе с тем, совершенно ясно, что ОМФ переходы играют очень важную роль в динамических процессах в твердых матрицах, активированных РЗ ионами. ОМФ переходы играют критическую роль в нерезонансных процессах передачи энергии, компенсируя донор-акцепторную энергетическую расстройку [10]. Они могут играть также определяющую роль в развитии первой ступени фотонной лавины [13]. Несомненно, наконец, что ОМФ приводят к фоновым потерям в оптических волокнах, активированных РЗ ионами [14]. В разработанной теории вероятности ОМФ переходов остаются конечными и при S = 0.

В концентрированных лазерных средах важную роль начинают играть кооперативные процессы трансформации энергии электронного возбуждения активаторов. Основная часть пятой главы посвящена решению задачи о кинетике кооперативного статического тушения люминесценции лазерных ионов-доноров, когда энергия возбуждения одного ОЦ идет на возбуждение нескольких других ОЦ, выполняющих роль кооперативного акцептора, (down-конверсия). В оптическом диапазоне кооперативные процессы down-конверсии были обнаружены впервые только в 2000 г. Басиевым, Дорошенко и Осико [15]. Актуальность темы обусловлена тем, что это направление исследований имеет большие перспективы как для создания лазеров инфракрасного диапазона, так и для разработки эффективных люминофоров и солнечных элементов. Эффективность люминофоров и солнечных элементов при этом достигается тем, что при поглощении ультрафиолетового кванта рождается два кванта видимого света, тогда как в традиционных схемах рождается один квант видимого света, а половина энергии ультрафиолетового кванта переходит в тепловую энергию. Аналитическое исследование кооперативных эффектов своевременно и актуально. В шестой главе рассматриваются излучательные переходы в ОЦ малого радиуса (ионы 4f, 5f и 3d групп) в диэлектрических нанокристаллах с целью выявления основных физических факторов, приводящих к модификации излучательных характеристик ОЦ в наноразмерных объектах. Актуальность темы обусловлена тем, что последнее время значительно возрос интерес к исследованию оптических свойств наноразмерных материалов. Прикладной целью исследований является создание биологических меток, новых нанокомпозитных люминофорных и лазерных сред с улучшенными характеристиками. Для нанокомпозитов актуальной проблемой является выявление физических причин изменения скорости спонтанного излучения ОЦ по сравнению с объемными телами и установление закономерностей спонтанного излучения в нанокомпозите. Понятие спонтанного перехода является ключевым понятием в лазерной физике и в теории взаимодействия поля с веществом. Современная теория излучательных переходов, созданная на базе квантовой механики и квантовой электродинамики, устанавливает тесную связь между вероятностями спонтанного излучения, вынужденного излучения и вероятностями переходов, сопровождающихся поглощением излучения [16]. Зная вероятности спонтанных переходов, нетрудно получить вероятности и других переходов. Без решения этой проблемы нельзя установить закономерности для многих других оптических характеристик нанокомпозитов (к примеру, для сечений поглощения и излучения, пороговых значений генерации). Актуальной проблемой является установление связи вероятности спонтанного излучения с формой наночастиц, диэлектрическими характеристиками нанокомпозита, с величиной объёмной доли наночастиц в нанокомпозите. В диссертации разработана теория излучательных переходов в ОЦ малого радиуса (d- и f-элементы), внедренных в нанокристаллы эллипсоидальной формы с линейными размерами много меньшими длины волны излучения. В частности, получена формула для отношения скорости распада возбуждения ОЦ в наночастице Anano к скорости распада возбуждения ОЦ в объемном образце Abulk, устанавливающая связь скорости распада Anano с формой наноэллипсоидов, с диэлектрическими характеристиками нанокомпозита и с величиной объёмной доли наночастиц в нанокомпозите. Актуальной проблемой является также выявление условий, при которых эффекты электрон-фононного взаимодействия (ЭФВ), вызванные размерной ограниченностью нанокристаллической матрицы, могут оказать существенное влияние на вероятности спонтанных переходов в наночастице.

Основные цели диссертационной работы заключались в следующем:

- построение теории многофононных безызлучательных переходов в редкоземельных ионах в лазерных кристаллах,

- построение теории многофононных оптических переходов в редкоземельных ионах в лазерных кристаллах,

- построение теории кинетики кооперативного тушения люминесценции,

- построение теории излучательных переходов в ОЦ малого радиуса (d- и f- элементы) в диэлектрических нанокристаллах.

На защиту выносятся следующие основные результаты и положения:

1. Разработаны основы нелинейной теории многофононной безызлучательной релаксации энергии оптических возбуждений ОЦ в кристаллах в случае слабого электрон-фононного взаимодействия (лазерные кристаллы, активированные ионами 4f и 5f групп).

2. Вывод аналитических выражений для вероятностей многофононных безызлучательных переходов, обусловленных как кулоновским, так и некулоновским электрон-фононным взаимодействием, на основе модели обменных зарядов. Полученные выражения для вероятностей многофононных безызлучательных переходов устанавливают связь скорости релаксации с параметрами статического кристаллического поля, квантовыми числами (в частности, спиновыми, орбитальными и полными угловыми моментами) начального и конечного электронных состояний f-ионов и характеристиками колебательного спектра кристалла.

3. Разработаны основы нелинейной теории оптических многофононных внутриконфигурационных переходов в редкоземельных ионах в лазерных кристаллах.

4. Полученные в рамках разработанной теории аналитические выражения для интенсивностей электронно-колебательных полос (ЭКП) излучения и поглощения устанавливают связь интенсивностей ЭКП с параметрами статического кристаллического поля, приведенными электронными матричными элементами 4f конфигурации и характеристиками колебаний кристалла. Полученные выражения обобщают результаты известной теории Джадда-Офельта [17-18], найденные для бесфононных [17-18] и однофононных переходов [17], на многофононные оптические переходы.

5. Разработана теория кинетики кооперативного тушения люминесценции. Получена аналитическая формула для разупорядоченной стадии

кинетики кооперативного тушения люминесценции двухчастичными акцепторами, устанавливающая явную зависимость скорости кооперативного тушения с концентрацией акцепторных частиц, с мультипольностью донор-акцепторного взаимодействия и размерностью пространства.

6. Разработана теория излучательных переходов в ОЦ малого радиуса (d- и f- элементы), внедренных в нанокристаллы эллипсоидальной формы с линейными размерами много меньшими длины волны излучения.

7. Вывод формулы для отношения скорости распада возбуждения ОЦ в наночастице Anano к скорости распада возбуждения ОЦ в объемном образце Abulk, устанавливающей связь скорости распада Anano с формой наноэллипсоидов, с диэлектрическими характеристиками нанокомпозита и с величиной объёмной доли наночастиц в нанокомпозите. Выявлено влияние морфологии наночастиц на скорость спонтанного распада. Выявлены условия, при которых эффекты ЭФВ, вызванные размерной ограниченностью нанокристаллической матрицы, могут оказать существенное влияние на вероятности спонтанных переходов в наночастице.

8. Выведено выражение для сечений излучения и поглощения света в активированных сферических наночастицах. Найдено простое выражение для лазерного параметра «качества» в сферических наночастицах.





Все полученные результаты являются новыми.

Практическая ценность состоит в том, что разработанные в диссертации теоретические положения излучательных и безызлучательных процессов в ионах 4f- и 5f-элементов в кристаллах включают в себя аналитические выражения, выявляющие зависимость оптических свойств от электронных характеристик ОЦ, характеристик колебательного спектра кристалла, и позволяющие производить конкретные практические расчеты и оценки вероятностей переходов. В частности, на основе разработанной нелинейной теории многофононной безызлучательной релаксации (МФР) были произведены расчеты и произведено сравнение с известными экспериментальными данными для большой гаммы безызлучательных переходов в лазерных кристаллах, активированных РЗ ионами (CaF2:RE3+, RE = Nd, Ho, Er; BaF2:RE3+, RE = Nd, Ho, Er; SrF2:RE3+, RE = Nd, Ho, Er; CdF2:RE3+, RE = Nd, Er; PbF2:RE3+, RE = Nd, Er; LaF3:RE3+, RE = Pr, Nd, Ho, Er, Tm; LiYF4:RE3+, RE = Pr, Nd, Ho, Er, Tm; LaBr3:RE3+, RE = Nd, Dy; Y3A5O12: RE3+, RE = Pr, Nd, Ho, Er, Tm; Lu3Al5O12: RE3+, RE = Ho, Tm; Gd2O2S:Nd3+ ; La2O2S:Nd3+; CaGa2S4:Nd3+; CdGa2S4:Nd3+; PbGa2S4:Nd3+; PbCl2:Nd3+).

Полученные теоретические результаты показывают, что излучательные характеристики наночастиц значительно отличаются от характеристик объемных кристаллов. Меняя объёмную долю наночастиц в суспензии или аэрозоли, показатель преломления окружающей наночастицы среды, морфологию и размеры наночастиц, удается управлять их оптическими свойствами, что открывает новые возможности для разработки и создания новых лазерных и люминесцентных сред с улучшенными характеристиками.

Результаты развития теории излучательных и безызлучательных процессов могут быть использованы при поисковых исследованиях новых оптических кристаллов, стекол, керамик и нанокомпозитов с улучшенными люминесцентными и генерационными характеристиками в организациях, занимающихся поиском новых сред для фотоники – в Физико-техническом Институте им. А.Ф. Иоффе РАН, Научном центре волоконной оптики РАН, в Институте лазерной физики ФГУП НПК «ГОИ им. С. И. Вавилова», Институте спектроскопии РАН, Санкт-Петербургском Государственном университете, Казанском Государственном университете, НИИ «Полюс» и других организациях. Результаты работы используются в Научном центре лазерных материалов и технологий Института общей физики им. А.М. Прохорова РАН.

Достоверность полученных результатов обеспечена строгой математической постановкой задач, применением математически обоснованных методов решения, изложением в форме, допускающей математическую проверку полученных результатов, сравнениями полученных аналитических решений с известными экспериментальными данными или результатами компьютерного моделирования.

Личный вклад автора. Представленные в работе научные результаты получены лично автором, либо при его непосредственном участии. Результаты, касающиеся нелинейной теории МФР в рамках модели точечных зарядов и представленные в работах [А1-А2], получены совместно с В. П. Сакуном. Результаты по кооперативному тушению (пятая глава) получены в соавторстве с И. Т. Басиевой, подготовившей под руководством соискателя кандидатскую диссертацию. Во всех остальных совместных публикациях, выполненных в соавторстве, соискателю принадлежат теоретические результаты. Во всех случаях использования результатов других исследований в диссертации приведены ссылки на источники информации.

Апробация работы. Результаты диссертационных исследований докладывались на международных и национальных конференциях, включая: Всесоюзное совещание «Люминесценция молекул и кристаллов» (Таллин 1987); Международный Феофиловский симпозиум по спектроскопии кристаллов, активированных ионами редкоземельных и переходных металлов (Казань 2001; Иркутск 2007; Санкт-Петербург 1995, 2010); Международная конференция по люминесценции и оптической спектроскопии конденсированных сред (ICL, Франция, Лион 2008); Международная конференция по динамическим процессам в возбужденных состояниях твердых тел (DPC, Миттельберг, Австрия/ФРГ 1997; США, Пуэрто-Рико, 1999; Франция, Лион 2001; Испания, Сеговия 2007); Международная конференция по лазерам и электрооптике (CLEO, США, Балтимор 1993); Национальная конференция по лазерам и электрооптике (QE-12, Великобритания, Саутгемптон 1995); Международная конференция "Advanced Solid State Lasers" (ASSL, США, Сан-Франциско 1996; США, Сиэтл 2001); 12-ая междисциплинарная конференция по лазерным наукам (ILS-XII, США, Рочестер 1996); Международная конференция «Возбужденные состояния в переходных элементах» (ESTE, Польша, Вроцлав 1997, 2001); Международная объединенная конференция по квантовой электроники/лазерам, применениям и технологиям (IQEC/LAT, Москва 2002); Международная конференция «Лазерная оптика» (Laser Optics, Санкт-Петербург 2003, 2006, 2010 ); Международная конференция "Advanced Solid State Photonics" (ASSP, США, Санта-Фе 2004; Канада, Ванкувер 2007); Всероссийская конференция «Оптика и спектроскопия конденсированных сред» (ОСКС, Краснодар 2004, 2007, 2008, 2009, 2010); Международная конференция по физике оптических материалов и устройств (ICOM, Черногория, Герцег-Нови 2006, 2009); Первая международная конференция по редкоземельным материалам (REMAT, Польша, Вроцлав 2008); Международный форум по нанотехнологиям (Роснанотех 2008, Москва 2008); Международная конференция по нанотехнологиям (NanoIsrael 2009, Израиль, Иерусалим 2009); XXIV Съезд по спектроскопии (Москва/Троицк 2010), а также на постоянно действующих семинарах, включая Московский семинар по физике и спектроскопии лазерных кристаллов; семинар Института общей физики им. А.М. Прохорова РАН, семинар Научного центра лазерных материалов и технологий ИОФ РАН, семинар Отдела  оптики твердого тела Физико-технического института им. А.Ф. Иоффе РАН.

Публикации. Список публикаций приведен в конце автореферата [А1-А35].

По материалам диссертации опубликовано 35 работ, из них: 26 опубликованы в ведущих рецензируемых научных журналах, определенных ВАК [А1, А4-А6, А8-А19, А21-А27, А29, А30, А34]; 2 — главы в книгах [А2, А32], 7 работ опубликованы в материалах всесоюзной, всероссийских и международных конференций [А3, А7, А20, А28, А31, А33, А35].

Основное содержание работы

Диссертация состоит из введения, шести глав, заключения, четырех приложений и списка цитируемой литературы.

Во введении дана общая характеристика диссертационной работы, обоснована актуальность темы исследований, сформулированы задачи и цели работы, дана краткая аннотация глав.

В первой главе дан обзор основных механизмов многофононных процессов в ОЦ в кристаллах и современных методов теории многофононных процессов, как безызлучательных, так и оптических. Дана формулировка исходных положений нелинейной теории многофононных процессов в редкоземельных ионах в лазерных кристаллах, представленной в главах 2-4 работы.



Pages:   || 2 | 3 | 4 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.