авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Изэнтропическое сжатие вещества импульсным магнитным полем

-- [ Страница 1 ] --

На правах рукописи

Прут

Вениамин Вениаминович

Изэнтропическое сжатие вещества
импульсным магнитным полем

Специальность 01.04.17 – химическая физика,
в том числе физика горения и взрыва

Автореферат диссертации на соискание ученой степени
доктора физико-математических наук

Москва 2008

Работа выполнена в Институте ядерного синтеза РНЦ “Курчатовский институт”

Официальные оппоненты:

доктор физико-математических наук, профессор
Демченко Владимир Владимирович
доктор физико-математических наук, профессор
Набиев Шавкат Шарифович

доктор физико-математических наук, профессор
Чарахчьян Александр Агасиевич

Ведущая организация: Институт проблем химической физики РАН

Защита состоится " ___ " ____________ 2009 г. в ______ часов
на заседании диссертационного совета Д 520.009.05
при РНЦ “Курчатовский институт” по адресу: 123182, Москва, пл. Курчатова 1

С диссертацией можно ознакомиться в библиотеке
РНЦ “Курчатовский институт”

Отзывы на автореферат просьба присылать по адресу:

123182, Москва, пл. Курчатова 1, РНЦ “Курчатовский институт”

Автореферат разослан " ____ " ________________ 200 года

Ученый секретарь В.Ф. Серик

диссертационного совета Д 520.009.05

доктор химических наук, профессор

Общая характеристика работы

Актуальность. Исследование веществ при высоких давлениях осуществляется тремя методами: статическим (изотермическим), ударно-волновым и изэнтропическим. Максимальные плотности, которые могут быть получены экспериментально при статическом сжатии в алмазных наковальнях, ограничены прочностью материалов. Достижимое статическое давление Мбар, что соответствует предельной «идеальной» величине модуля сдвига. Максимальные температуры в алмазных наковальнях ограничены графитизацией алмаза.

Современные ударно-волновые методы используют легко-газовые пушки, химические и ядерные взрывчатые вещества, электромагнитное ускорение, лазеры, электронные и ионные пучки. С помощью подземных ядерных взрывов достигнуты давления Гбар. Особенность ударно-волнового сжатия заключается в существовании предельной величины плотности, после достижения которой давление возрастает, в основном, из-за увеличения температуры. Вырождение снимается, и вещество превращается в «обычную» (идеальную, невырожденную) плазму. При ударном сжатии «мягких» веществ, таких как гелий, водород, молекулярные кристаллы, предельные плотности соответствуют давлениям в сотни кбар. Даже металлизация гелия, которая «должна» происходить при давлении Мбар, не достижима ни при статическом, ни при ударно-волновом сжатии.

Поэтому единственная возможность получения очень высоких плотностей есть изэнтропическое сжатие вещества. При изэнтропическом сжатии не существует термодинамических, гидродинамических или конструктивных ограничений на достижение больших плотностей при относительно низких температурах. На изэнтропе конечная температура пропорциональна начальной, так что можно изменять в широких пределах температуру сжатого вещества, варьируя его начальную температуру. Ограничения обусловлены, в основном, выбором и формой импульса источника энергии.



Идея получения высоких плотностей при изэнтропическом сжатии принадлежит Гюгонио и Рэлею, которые рассматривали плоскую центрированную волну Римана. И самые известные способы реализации этой идеи были осуществлены лишь спустя более полувека в неуправляемом инерционном ядерном синтезе, а затем в концептуальном проекте управляемого ядерного синтеза. Однако в задачах термоядерного синтеза необходимо нахождение оптимального соотношения между температурой и плотностью при минимуме вкладываемой энергии для достижения максимального сгорания ядерного топлива. Идеализированные, в частности, автомодельные задачи применяются в качестве начального приближения в двух и трехмерных задачах, учитывающих возможно полную совокупность физических процессов.

Существуют многочисленные физические задачи, представляющие значительный интерес, быть может, больший, нежели задача управляемого термоядерного синтеза. Прежде всего, это измерение уравнения состояния при низких температурах в мегабарном и гигабарном диапазонах и проверка различных теоретических моделей, включающих оболочечные эффекты. При изэнтропическом сжатии могут быть достигнуты все планетарные параметры: Земли и больших планет. По-видимому, a priori не следует исключать возможности достижения звездных параметров: солнечных и звёздных карликов. Для того чтобы получить плотности звёздных карликов в объёме мм3, достаточно энергии Дж ( кт тротила). Получение высоких плотностей открыло бы возможность исследования в лабораторных условиях пикноядерных реакций, определяемых плотностью – в отличие от «обычных» термоядерных реакций.

Ближайшей задачей на этом пути достижения высоких плотностей есть, безусловно, задача получения металлического водорода, который при давлении несколько мегабар «должен» перейти в металлическое состояние, обладающего гипотетически высокой ( K) температурой перехода в сверхпроводящее состояние. Несмотря на значительные усилия в последние десятилетия, когда было опубликовано несколько работ, зафиксировавших резкое возрастание проводимости водорода и гелия, в настоящее время, по-видимому, нет независимых доказательств их металлизации при низкой температуре.

Паллиативом изэнтропическому сжатию может быть так называемое квазиизэнтропическое сжатие – серия относительно слабых ударных волн, что приводит к снижению температуры по сравнению с однократной ударной волной. Рассматривались различные промежуточные среды для преобразования ударных волн как в изэнтропическую волну сжатия, так и квазиизэнтропическую. В частности, в качестве промежуточной среды использовалось магнитное поле в геометрии -пинча. К недостаткам этих экспериментов следует отнести: отсутствие прямого измерения давления, что в значительной степени обусловлено неприемлемо низкой точностью рентгенографического измерения объёма; обычно возникающую неоднородность по длине; невозможность сохранения образца при высоких давлениях.

Эти недостатки в значительной степени можно устранить, используя в качестве динамического пресса металлический -пинч, основанный на взаимодействии тока, протекающего через металлическую трубку с собственным магнитным полем. Выбранная схема эксперимента, кроме принципиального преимущества в однородности сжатия, позволяет значительно увеличить точность измерения радиуса сжимающейся трубки от времени: возможна непрерывная оптическая регистрация и рентгеновская съемка со значительно большей точностью.

В диссертационной работе рассматриваются несколько основных направлений исследований, подчиненных главной цели: поиску путей получения изэнтропических давлений мегабарного диапазона при сжатии импульсным магнитным полем.

  1. Решение автомодельных задач изэнтропического сжатия вещества.
  2. Автомодельное и численное решение задач нелинейной диффузии магнитного поля.
  3. Аппроксимация уравнения состояния вещества в широком диапазоне параметров.
  4. Разработка экспериментальных методов получения высоких давлений и создание соответствующей техники.
  5. Измерение уравнения состояния вещества в широком диапазоне давлений.

Основные научные результаты и новизна работы

    1. Решена автомодельная задача изэнтропического сжатия сферическим или цилиндрическим поршнем однородного вещества с реальным уравнением состояния. Особенность данной работы, в отличие от всех известных, заключается в том, что предложенный метод решения применим к любым уравнениям состояния. Установлены асимптотические зависимости. Описаны эволюция профилей и временные зависимости на поршне.
      Решена задача релятивистского изэнтропического сжатия плоским поршнем вещества со степенным уравнением состояния построена релятивистская центрированная волна сжатия. Получено численное решение, а также приближенные решения в ультрарелятивистском и нерелятивистском пределах. Рассмотрены особенности, которые вносит релятивизм при переходе к предельным сжатиям. Приведены оценки времени перехода к релятивистскому пределу в цилиндрической и сферической геометрии.
      Решена задача сферического сжатия конденсированного вещества оболочкой в приближении несжимаемой среды. Величины на внутренней границе оболочки определяются решением автомодельной задачи. Установлены асимптотические зависимости скорости и кинетической энергии оболочки при вхождении в коллапс.
      Полученные результаты показали принципиальную возможность достижения очень высоких плотностей и давлений, ограниченных лишь источником энергии. Выбор начального состояния определяет конечную температуру, соотношение между конечными значениями упругой и тепловой частями давления и энергии. Обсуждается отсутствие физических ограничений при получении плотностей и температур, характерных для физики больших планет и даже звёздных карликов.
    2. Решена автомодельная задача уравнений нелинейной диффузии магнитного поля в полупространство. Задача содержит две нелинейные зависимости: в граничном условии магнитного поля и зависимости сопротивления от энергии. Построено распределение магнитного поля и внутренней энергии на фронте волны. Получена характерная величина ширины фронта волны. Найдено соотношение между внутренней и магнитной энергиями в зависимости от параметров задачи. Предложена физическая модель, описывающая нелинейную диффузию сильного магнитного поля в проводник. Дана аппроксимация электропроводности и теплопроводности во всем диапазоне рассматриваемых параметров, которая интерполировалась между электропроводностями твердого тела (вырожденной плазмы) и идеальной (невырожденной) плазмы. Приведены результаты численного решения этой задачи, в частности, зависимость достижимого давления при токах до 1 ГА. Показано, что токи величиной несколько десятков мегаампер могут приводить к увеличению времени удержания вещества в магнитном поле.
    3. Предложена аппроксимация уравнения состояния вещества, при которой во всей нерелятивистской области последовательно используется интерполяционный подход, как по плотности, так и по температуре. «Холодная» составляющая определяется при нормальных условиях экспериментальными параметрами. Тепловая ионная составляющая описывает переход от колебаний решетки со свободной энергией Дебая с вводимой характеристической температурой. Это позволяет расширить диапазон ее применения от твердого тела до идеального газа. Приведена интерполяция функции Дебая. Предложена аппроксимация свободной энергии электронов. Тепловая электронная составляющая описывает переход свободных электронов от идеального вырожденного газа к невырожденному состоянию. Получена формула, позволяющая вычислить степень ионизации при произвольных плотностях и температурах. Описаны непрерывные функции, аппроксимирующие потенциалы и энергии ионизации. Для меди вычислены фазовая диаграмма, ударные адиабаты для сплошного и пористого вещества, изэнтропы. В рамках предложенной модели рассматриваются особенности кривой плавления при высоких давлениях. Результаты расчетов иллюстрируются зависимостями от степени сжатия в диапазоне . Адекватность модели подтверждается сравнением расчетных и экспериментальных данных. Предложена иная форма аппроксимации уравнения состояния вещества, справедливая не только во всей нерелятивистской области, но и «близкой» релятивистской области (г/см3). Для непрерывной энергии ионизации использовалась сплайн-интерполяция, что позволяет унифицировать процесс построения энергии ионизации для большого количества веществ.





      Проведены расчеты «холодной» и тепловых составляющих энергии и ряда других термодинамических функций, а также ударных адиабат для большинства элементов.

    4. Рассмотрено квазиклассическое уравнение состояния с квантовыми поправками на неоднородность электронного газа к корреляционной энергии. Приводится аппроксимация корреляционной энергии во всем диапазоне плотностей. Рассматривается аппроксимация уравнения состояния, когда в квазиклассическом приближении в обменно-корреляционной и кинетической энергиях учитывается поправка на неоднородность электронного газа. Решена задача нахождения параметров модели, удовлетворяющих «нормальным» условиям. Приведены результаты численного решения уравнений модели при различных степенях сжатия. Найдены значения параметра квазиклассичности, определяющего точность рассматриваемого приближения. Вычислена степень ионизации элементов как функция плотности. Предлагаемая модель построения уравнения состояния позволяет сравнительно просто и с достаточной точностью приблизиться для рассматриваемых функций к экспериментальным величинам. Кроме того, модель предоставляет значительно больший объем самосогласованной информации по сравнению с обычной аппроксимацией.
    5. Проведены экспериментальные исследования сжимаемости твердого водорода при высоких давлениях в металлическом z-пинче. Разработаны методы измерения уравнения состояния в изэнтропическом процессе: «эталонный» и «вариационный». «Эталонный» метод основан на использовании эталонных веществ с известным уравнением состояния. Давление в исследуемом веществе определяется по сжимаемости эталонного вещества при условии относительного равенства давлений. Проведен анализ погрешности методов. Точность «эталонного» метода определяется степенью однородности давлений, точностью измерения размеров исследуемого и эталонного веществ и точностью уравнения состояния эталонного вещества. «Вариационный» метод основан на численном моделировании процесса и варьировании параметров уравнения состояния. Его точность определяется точностью измерения тока, точностью измерения размеров трубок и точностью уравнения состояния сжимающего вещества. Получено уравнение состояния водорода при давлениях до 150 кбар «эталонным» методом с максимальной погрешностью измерений объема , давления . Предложен способ аппроксимации уравнения состояния водорода, основанный на интерполяции свободной энергии по плотности и температуре. Рассмотрен непрерывный переход из твердого состояния в молекулярный газ, а также свободных вращений молекул и внутримолекулярных колебаний в колебания решетки. Для определения параметров уравнения состояния используются экспериментальные результаты. Проведено сравнение с экспериментальными и теоретическими результатами других авторов. Давление перехода молекулярного водорода в металлическое состояние оценивается величиной 5-6 Мбар.
    6. Проведены МГД расчеты сжатия твердого водорода и инертных газов в мегабарном диапазоне давлений в металлическом z-пинче. Определены условия согласования параметров лайнера, генератора тока и исследуемого вещества. Приведена зависимость давления от этих параметров. Показано, что могут быть получены давления перехода для всех этих веществ при параметрах генератора тока, реально осуществимых в настоящее время.
      Рассмотрены в качественном приближении (нульмерная модель) процессы динамики и нагрева металлической трубки, применяемой в качестве поршня при сжатии вещества магнитным полем. Проведен численный анализ динамики металлического -пинча в приближении несжимаемости вещества лайнера. Получены оптимальные параметры сжатия веществ, определены возможности и ограничения этого метода.
    7. Для исследования реологических характеристик металла при высокоскоростной деформации проведены эксперименты по деформированию медных и алюминиевых трубок магнитным полем Предложена дислокационная модель высокоскоростной деформации изотропной среды. Модель основана на линейной континуальной теории дислокаций и теоретических и экспериментальных результатах по динамике дислокаций. Модель позволила описать наши экспериментальные результаты в пределах погрешности измерений. Определены параметры модели. Дислокационная модель дает значительно более высокую точность, нежели рассматриваемые феноменологические реологические модели.
    8. Проведены эксперименты, демонстрирующие возможность сохранения вещества, сжатого при сильноточном разряде конденсаторной батареи через металлический лайнер. Проводилось сжатие красного фосфора магнитным давлением кбар. Переход красного фосфора в черный подтверждался рентгеноструктурным анализом. На основе этих экспериментов предложена схема превращения графита в алмаз в изэнтропическом процессе сжатия в металлическом z–пинче с сохранением алмаза. Построено уравнение состояния графита и алмаза в широком диапазоне плотностей и температур. Приведена система уравнений фазового перехода графита в алмаз. Вычислены ударные адиабаты графита и алмаза. Изложены результаты численного моделирования превращения графита в алмаз в z-пинче.
    9. Созданы четыре экспериментальные установки для исследования сжимаемости веществ при высоких давлениях, в частности, конденсированного водорода, а также для исследования высокоскоростной деформации металла и исследования сжатия плазмы. Установка «Юпитер» состоит из генератора импульсных токов, криогенной техники, рентгеновской и оптической систем регистрации, систем запуска и синхронизации. При рабочем токе до 5 МА установка обеспечивает генерирование мегагауссных магнитных полей и давлений в конденсированном водороде ~ 2 Мбар. Разработана специальная криогенная техника, предназначенная для конденсации водорода в рабочей трубке с контролируемой температурой и плотностью, подвода к трубке мегаамперного тока. Оптические и рентгеновские измерения обеспечивают регистрацию размеров сжимающейся трубки с высоким временным (10 нс) и пространственным (10 мкм) разрешением. По результатам проведенных исследований создана и испытана установка «z-пинч», включающая в себя конденсаторную батарею энергоемкостью 1.2 МДж, генератор импульсов запуска, систему зарядки, схему запуска, вакуумную систему, разрядную камеру. Описываемая установка может быть использована для генерации мегагауссных импульсных магнитных полей и мегабарных давлений, а также исследования возможности получения гигагауссных полей, мощных нейтронных и рентгеновских импульсов излучения.

Практическая ценность работы



Pages:   || 2 | 3 | 4 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.