авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 |

Развитие и применение акустико-эмиссионного и рентгенодифрактометрического методов исследования пластической деформации поликристаллов

-- [ Страница 1 ] --

На правах рукописи

Корчевский Вячеслав Владимирович

РАЗВИТИЕ И ПРИМЕНЕНИЕ АКУСТИКО-ЭМИССИОННОГО И РЕНТГЕНОДИФРАКТОМЕТРИЧЕСКОГО МЕТОДОВ ИССЛЕДОВАНИЯ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПОЛИКРИСТАЛЛОВ

01.04.07. Физика конденсированного состояния

Автореферат

диссертации на соискание ученой степени

доктора физико-математических наук

Хабаровск – 2007 г.

Работа выполнена в Тихоокеанском государственном университете и НПО "Дальстандарт"

Научный консультант: Заслуженный деятель науки РФ,

доктор технических наук, профессор, Ри Хосен

Официальные оппоненты: доктор физико-математических наук, профессор Астапова Е. С.

доктор физико-математических наук Луговой В. А.

доктор физико-математических наук,

профессор Семашко Н. А.

Ведущая организация: Институт материаловедения ХНЦ ДВО РАН

г. Хабаровск

Защита состоится “__”___________ 2007 года в __ часов на заседании региональном диссертационного совета ДМ 218.003.01 при Дальневосточном государственном университете путей сообщения по адресу: 680027, Хабаровск, ул. Серышева, 21

С диссертацией можно ознакомиться в библиотеке Дальневосточном государственном университете путей сообщения

Автореферат разослан “__” 2007 года

Ученый секретарь

диссертационного совета,

кандидат технических наук Т.Н. Шабалина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Расширяющееся использование в машиностроении методов обработки металлов давлением нуждается в дальнейшем развитии представлений о пластической деформации конструкционных материалов. В настоящее время основной тенденцией в изучении пластической деформации является получение количественных связей между процессами, происходящими на макро-, мезо- и микроуровнях. Такой подход требует новых методов исследований (особенно на мезоуровне), а также дополнительных обследований существующих методов с целью нахождения и исключения систематических погрешностей, искажающих получаемые количественные связи.

Основой нового количественного метода исследования пластической деформации на мезоуровне может стать такое явление, как акустическая эмиссия. Физическими предпосылками возможности создания такого метода служит то, что согласно современным представлениям элементарные акты пластической деформации должны сопровождаться излучением упругих колебаний. Существующие экспериментальные данные и феноменологические модели АЭ показывают наличие корреляции между параметрами сигналов АЭ и остаточной деформацией образцов. Основным недостатком этих данных и моделей является то, что они справедливы только для определенных условий испытаний. На их основе невозможно предсказать акустико-эмиссионные свойства нового материала или значения параметров сигналов АЭ при изменении условий испытаний. В частности, нельзя перенести результаты испытаний лабораторных образцов на результаты испытаний натурных объектов. Можно сказать, что существующие данные по АЭ при пластической деформации металлов обладают низкой воспроизводимостью, т.е. результаты испытаний одного и того же материала, но в разных условиях, могут значительно отличаться друг от друга. При этом отсутствует какая-либо возможность сопоставить такие данные друг с другом путем ввода поправок на влияние условий испытаний, поскольку нет математической модели измерения остаточной деформации по параметрам сигналов АЭ, учитывающей влияние условий испытаний.



Многоуровневый характер пластической деформации требует новой методологии ее изучения. Для установления механизмов пластической деформации достаточно было воспользоваться одним методом, наиболее полно раскрывающим изучаемый механизм. Для более глубокого понимания процессов, происходящих на разных уровнях пластической деформации и их взаимодействия между собой, необходим комплексный подход, в котором пластическая деформация исследуется сразу одновременно на нескольких уровнях различными методами. Одним из таких методов должен быть метод, позволяющий изучать изменения кристаллической структуры в процессе деформирования, поскольку наблюдаемая электронно-микроскопическими методами эволюция дислокационных субструктур должна приводить к таким изменениям.

Наблюдаемые дислокационные субструктуры отображают общий ход процессов, происходящих при пластической деформации конкретного типа материалов. Получаемые при этом результаты достаточно сложно использовать для количественного описания. Методы рентгеноструктурного анализа, основанные на анализе профиля дифракционных линий, по своей физической сущности должны давать информацию, схожую с информацией, получаемой методом фольг. При этом они позволяют отслеживать изменения кристаллической структуры на одном и том же образце. Получаемая ими информация представляется в виде некоторого численного значения параметра, усредненного по большому объему материала, что позволяет установить некую количественную зависимость данного параметра от деформации.

Однако плохая сопоставимость результатов рентгеноструктурных исследований с результатами, полученными другими методами, указывает на наличие в существующих методах рентгеноструктурного анализа неисключенных систематических погрешностей. Для повышения достоверности рентгеноструктурных исследований необходимо провести метрологический анализ существующих методов и найти возможности исключения существующих погрешностей на основе современных технологий.

Исходя из всего вышеизложенного, целью настоящей работы является совершенствование акустико-эмиссионного и рентгенодифрактометрического методов исследования пластической деформации и применение их для изучения процессов, происходящих при пластическом деформировании поликристаллических тел.

В соответствии с поставленной целью в основные задачи исследования входило:

– создание модели АЭ при пластической деформации поликристаллов;

– установление основного источника непрерывной АЭ при пластической деформации поликристаллов путем исследования взаимосвязи между параметрами акустического излучения и изменениями структуры поверхности;

– разработка аналитического метода определения параметров тонкой кристаллической структуры поликристаллических металлов;

– исследование с помощью усовершенствованных акустико-эмиссионного и рентгенодифрактометрического методов процессов пластической деформации поликристаллов с различным типом кристаллической решетки;

– применение акустико-эмиссионного метода для определения нагрузки начала пластического течения материала изделий.

Научная новизна работы.

1. Создана статистическая модель АЭ при пластической деформации поликристаллов, учитывающая влияние условий испытаний на значения измеряемых сигналов. В соответствии с этой моделью были теоретически установлены и экспериментально подтверждены ранее неизвестные закономерности АЭ при пластическом деформировании поликристаллов. На базе этой модели предложен акустико-эмиссионный метод исследования динамики сдвиговых процессов при деформировании сталей.

2. Разработан численно-аналитический метод определения размеров областей когерентного рассеяния (ОКР) и искажений решетки по одной дифракционной линии. В этом методе впервые численное моделирование было использовано для исключения систематических погрешностей, обусловленных условиями получения дифракционной линии. Метод позволяет выделить до трех синглет из одной мультиплетной дифракционной линии.

3. Экспериментально доказано, что основным источником АЭ при пластической деформации металлов является процесс образования следов скольжения.

4. Впервые определено, что при одноосном растяжении образцов, изготовленных из углеродистой стали, существуют два типа источников АЭ, имеющие экспоненциальное и релеевское распределения источников АЭ по остаточным деформациям.

5. Впервые установлено, что при пластической деформации металлов происходит снижение симметрии кристаллической решетки металлов, выражающейся в трансформации кубической решетки в орторомбическую.

6. Установлены основные требования, в рамках которых применим акустико-эмиссионный метод контроля размерной стабильности.

Практическая ценность работы:

1. Разработанные акустико-эмиссионный метод исследования пластической деформации, основанный на статистической модели АЭ при пластическом деформировании поликристаллов, и численно-аналитический метод определения размеров ОКР и искажений решетки по одной дифракционной линии повышают достоверность и воспроизводимость результатов исследований пластической деформации за счет исключения систематических погрешностей, связанных с используемым оборудованием.

2. На основе статистической модели АЭ сформулированы основные положения измерения АЭ при пластической деформации, включающие в себя выбор измеряемой физической величины, принципы построения измерительной аппаратуры, методику обработки результатов измерения.

3. Численно-аналитический метод может быть использован в спектроскопии для определения параметров отдельных синглетов в мультиплетных линиях.

4. Установленные закономерности изменения кристаллической структуры и акустического излучения сталей при пластическом деформировании расширяют представления о физической природе процессов пластической деформации и отпуска сталей и могут быть использованы при развитии теории прочности и пластичности металлов и методик неразрушающего контроля с помощью АЭ.

5. Полученные в работе результаты исследования АЭ при пластической деформации и статистическая модель АЭ легли в основу разработки способа контроля размерной стабильности изделий.

6. Научные результаты, полученные при выполнении работы, использованы в учебных курсах "Методы исследования структуры", "Методы и средства измерений, испытаний и контроля", "Физические основы измерений", читаемые в Тихоокеанском государственном университете, и написании учебных пособий "Физические основы измерений", "Базовые методы и средства измерений и испытаний в технике" и "Методы и приборы измерений, испытаний и контроля: электронное учебное пособие".

Основные положения, выносимые на защиту.

1. Численно-аналитический метод определения параметров тонкой структуры по одной линии, заключающийся в компьютерном моделировании процесса получения интерференционных линий на рентгеновском дифрактометре и нахождении таких значений плоскостей отражения и углов отражений, при которых вероятность аппроксимации экспериментальной зависимости дифрагированного излучения от угла отражения теоретической будет максимальной.

2. Статистическая модель АЭ при пластическом деформировании путем одноосного растяжения образцов из поликристаллов, согласно которой при одноосном растяжении зависимости плотности потока энергии сигналов (интенсивности ультразвука) непрерывной АЭ от остаточной деформации отображают произведение плотности распределения источников АЭ, излучивших акустические сигналы, по остаточным деформациям на скорость остаточной деформации.

3. Основным источником непрерывной АЭ при пластической деформации поликристалов является процесс образования следов скольжения на поверхности деформируемого металла. Энергия сигналов непрерывной АЭ прямо пропорциональна числу образовавшихся полос скольжения.

4. Особенности пластической деформации сталей, имеющих гранецентрированную и объемноцентрированную кубическую решетку, состоящие в том, что:

- пластическая деформация отожженных сталей при одноосном растяжении носит многостадийный характер, при этом в стали с гранецентрированной кубической решеткой она протекает в четыре стадии, а в стали с объемноцентрированной кубической решеткой – в шесть, причем на последних трех стадиях в обеих сталях происходят схожие процессы;

- с увеличением степени пластической деформации кубическая решетка преобразуется в орторомбическую;

- закалка и последующий отпуск стали 30ХГСНА приводит к уменьшению количества стадий пластической деформации, причем с ростом температуры отпуска увеличивается количество стадий. Уменьшение количества стадий происходит за счет одновременного протекания процессов, которые в отожженной стали 30ХГСНА происходят на разных стадиях.





5. После закалки и отпуска стали 30ХГСНА с повышением температуры отпуска происходит трансформация типа пространственной решетки Браве по цепочке: тетрагональная – орторомбическая – кубическая.

6. Возникновение непрерывной АЭ при пластической деформации углеродистых сталей со значениями плотности потока энергии сигналов 2,510-12 Вт/м2 сопровождается появлением остаточных деформаций величиной менее 0,001%, что позволяет использовать акустико-эмиссионный метод для определения нагрузки появления пластических деформаций заданного уровня в изделиях и конструкциях.

Апробация работы. Материалы исследований по теме диссертации докладывались и обсуждались на 1-ой Всесоюзной научно-технической конференции "Акустическая эмиссия материалов и конструкций" (г. Ростов-на-Дону, 1984 г.), на IX Всесоюзной научно-технической конференции по неразрушающим методам контроля (г. Минск, 1981 г.), на двух Всесоюзных научно-технических конференциях "Использование современных методов в неразрушающих исследованиях" (г. Хабаровск, 1981, 1984 гг.), на регио­нальных конференциях (г. Хабаровск, 1980, 1983 гг.), на Международном Китайско-Российском Симпозиуме "Современные материалы и технологии обработки" (г. Харбин, 2006 г.), на международных симпозиумах (Самсоновские чтения, г. Хабаровск, 2002, 2206 гг.), на международной научной конференции "Фундаментальные и прикладные вопросы механики" (г. Хабаровск, 2003), на IV Азия-Тихоокеанской Международной конференции "Фундаментальные проблемы опто- и микроэлектроники" (г. Хабаровск, 2004), на VII съезде литейщиков России (г. Новосибирск, 2005), на IV Международной научно-технической конференции "Современные инструментальные системы, информационные технологии и инновации" (Курск, 2006).

Публикации. Основные материалы по теме диссертации отражены в 25 научных работах, опубликованных в рецензируемых отечественных журналах и материалах международных конференций и симпозиумов. Перечень публикаций приведен в конце автореферата.

Структура и объем работы. Диссертационная работа изложена на 257 листах, иллюстрируется 60 рисунками и 13 таб­лицами, состоит из введения, пяти глав, заключения, списка литературы из 257 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, указаны цели исследования, научная новизна полученных результатов и практическое значение работы, сформулированы основные положения, выносимые на защиту.

В первой главе проводится аналитический обзор современных представлений о пластической деформации и методов ее исследования. Отмечено, что пластическая деформация поликристаллических тел представляет собой сложный многостадийный и многоуровневый процесс, в котором задействованы различные механизмы. Показано, что существуют различные методы изучения пластической деформации, которые можно разделить на четыре основных группы: механические, оптические, дифракционные и физические. Приведены общие сведения об акустико-эмиссионном методе неразрушающего контроля. Рассмотрены основные механизмы АЭ при пластической деформации кристаллических тел. Выявлены основные закономерности АЭ при пластическом деформировании металлов. Проанализированы основные методы определения параметров тонкой структуры металлов по ширине дифракционной линии.

Во второй главе описаны исследуемые материалы, методика изготовления образцов, методика проведения механических испытаний, методика структурных исследований, используемое оборудование и аппаратура для измерения АЭ.

Исследования проводили на плоских образцах, изготовленных из аустенитной стали 12Х18Н10Т, среднеуглеродистой легированной стали 30ХГСНА и технического титана ВТ1-0. Образцы из стали 30ХГСНА закаливали с 8800С в масло и отпускали при разных температурах. Растяжение осуществляли на испытательных машинах, реализующих нагружение с постоянной скоростью перемещения подвижной траверсы. Для измерения деформации использовали фотоэлектрический преобразователь перемещения, имеющий минимальную относительную погрешность измерения удлинения 410-6.

Акустическую эмиссию регистрировали прибором ИМ-1, в котором реализованы основные требования к средствам измерения непрерывной АЭ при пластической деформации металлов. Ширина полосы пропускания прибора – 10 кГц, центральная частота – 150 кГц. Показания прибора отградуированы в значениях плотности потока энергии упругих колебаний частотой 150 кГц по формуле

, (1)

где Z – акустический импеданс; А – амплитуда колебаний поверхности.

Рентгеноструктурные исследования проводили на дифрактометре ДРОН-1 и ДРОН-3. Изучение структуры поверхности деформированных образцов осуществляли с помощью оптического и электронного микроскопов.

Третья глава посвящена акустико-эмиссионному методу изучения пластической деформации поликристаллов. Изложена статистическая модель АЭ при пластической деформации поликристаллов, которая лежит в основе акустико-эмиссионного метода. В основу этой модели положено представление о том, что процесс генерации сигналов АЭ можно рассматривать как задачу об изменении количества одинаковых и независимых частиц в статистическом ансамбле при внешнем воздействии, в результате которого происходит их уничтожение. Из решения этой задачи следует, что распределение числа источников сигналов АЭ, излучивших акустические сигналы, по удлинению описывается распределением Вейбулла:

, (2)

где N0 – полное число источников АЭ; – показатель степени; L0 – начальная расчетная длина образца; Lэ – акустико-эмиссионная длина.

В результате действия источников АЭ в деформируемом теле возникает поток энергии упругих колебаний, который описывается выражением

, (3)

где Е(f) – энергетический спектр сигнала АЭ; G() – передаточная функция среды распространения; dL/dt – скорость остаточного удлинения рабочей части образца.

Этот поток оказывает силовое воздействие на пьезопреобразователь площадью Fn. Зависимость электрического напряжения U(f), регистрируемого на выходе пьезопреобразователя в результате действия источников АЭ, от величины остаточного удлинения можно найти из следующего выражения

, (4)

где – плотность тела, в котором распространяется поток акустической энергии; – скорость распространения волны в среде; (f) – амплитудно-частотная характеристика пьезопреобразователя.

Из этого уравнения следует, что зависимость интенсивности гармонического акустического излучения некоторой частоты f0 или плотности потока энергии (ППЭ) сигналов АЭ J, возникающей при излучении акустических сигналов N0 источниками АЭ, от остаточной деформации определяется следующим выражением



Pages:   || 2 | 3 | 4 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.