авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 |

Физические свойства железосодержащих матриц и нанокомпозитных мультиферроидных материалов на их основе

-- [ Страница 1 ] --

На правах рукописи

Поречная Надежда Ивановна

ФИЗИЧЕСКИЕ свойства железосодержащих МАТРИЦ И НАНОкомпозитных МУЛЬТИФЕРРОИДНЫХ МАТЕРИАЛОВ

на их основе

Специальность 01.04.04 — физическая электроника

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Санкт-Петербург — 2013

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный политехнический университет»

Научный руководитель: кандидат физико-математических наук, старший научный сотрудник

Набережнов Александр Алексеевич

Официальные оппоненты:

Афанасьев Валентин Петрович

доктор технических наук, профессор, зав. кафедрой квантовой

электроники и оптико-электронных приборов

ФГБОУ ВПО «Санкт-Петербургский государственный

электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»

Смирнов Олег Павлович

кандидат физико-математических наук, старший научный сотрудник

НИЦ «Курчатовский институт» ФГБУ «Петербургский институт

ядерной физики им. Б.П. Константинова»

Ведущая организация: Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Санкт-Петербургский государственный университет»

Защита состоится «12» сентября 2013 года в 14 часов 00 минут на заседании диссертационного совета Д 212.229.01 при ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет» по адресу: 195251, Санкт-Петербург, ул. Политехническая, д. 29, учебный корпус 4, ауд. 305.

С диссертацией можно ознакомиться в фундаментальной библиотеке ФГБОУ ВПО «Санкт- Петербургский государственный политехнический университет»

Автореферат разослан « » 2013 г.

Ученый секретарь диссертационного совета Доктор технических наук, профессор Коротков Александр Станиславович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. В настоящее время наблюдается устойчивый рост интереса к наноструктурированным и нанокомпозитным материалам различной природы (диэлектрическим, сегнетоэлектрическим, магнитным и пр.), в частности к многофункциональным материалам, совмещающим несколько типов упорядочения, например, магнитоэлектрикам. Сосуществование в таких материалах двух подсистем (магнитной и электрической) предполагают возможность намагничивания под воздействием электрического поля и, наоборот, поляризации под воздействием магнитного поля. Поиск новых объектов, подходящих для создания подобных структур (многофункциональных материалов) является весьма актуальной задачей, как с фундаментальной, так и с практической точек зрения. Приступая к работе с новыми объектами, в первую очередь необходимо всестороннее изучить их структуру и свойства. В качестве таких объектов, подходящих для создания многофункциональных материалов, в настоящей работе предлагается использовать активные (магнитные) матрицы на базе двухфазных щелочно-боросиликатных стекол, содержащих оксид железа (III). Оригинальные технологии изготовления этих стекол и пористых образцов на их основе разработаны в ИХС РАН, сотрудниками ИХС РАН также проведена первичная аттестация предоставленных образцов [1-3].





Целью диссертационной работы является определение физических характеристик и особенностей структуры двухфазных железосодержащих щелочно-боросиликатных стекол (ЩБС) и пористых магнитных матриц на их основе, пригодных для создания многофункциональных нанокомпозитных материалов с пространственно разделенными магнитным и сегнетоэлектрическим упорядочениями.

Основные задачи работы:

  1. Получение информации о морфологии двухфазных (непористых) железосодержащих ЩБС с различными концентрациями Fe2O3 в исходной шихте и пористых магнитных матриц на их основе методами атомно-силовой микроскопии.
  2. Определение кристаллической структуры и характерных размеров частиц оксида железа в непористых железосодержащих ЩБС с различными концентрациями Fe2O3 в исходной шихте и в пористых магнитных матрицах из анализа дифракционных спектров, полученных методом порошковой рентгеновской дифракции высокого разрешения и проведение фазового анализа
  3. Исследование диэлектрического отклика непористых железосодержащих ЩБС с различными концентрациями Fe2O3 в исходной шихте и пористых магнитных матриц на их основе.
  4. Получение данных о магнитных характеристиках двухфазных железосодержащих ЩБС и пористых магнитных матриц на основе анализа результатов магнитно-силовой микроскопии, вибрационной магнитометрии и при помощи сверхпроводящего квантового интерферометра (СКВИД).
  5. Исследование диэлектрического отклика нанокомпозитных материалов на основе пористых магнитных матриц, в том числе и во внешних магнитных полях.
  6. Изучение влияния магнитного поля на температурную зависимость параметра порядка в нанокомпозитах с внедренным нитритом натрия.

Все эти данные необходимы для разработки эффективных технологий создания на основе подобных пористых матриц мультифункциональных нанокомпозитных материалов.

Научная новизна диссертационной работы заключается в следующем:

  1. Впервые методами атомно-силовой микроскопии исследована морфология двухфазных железосодержащих стекол Fe25 – 50 % SiO2–20 % B2O3–5 % Na2O–25 % Fe2O3, Fe20 – 60 % SiO2–15 % B2O3–5 % Na2O–20 % Fe2O3, Fe15 – 60 % SiO2–20 % B2O3–5 % Na2O–15 % Fe2O3 и пористых магнитных матриц на основе стекла Fe20. Доказано, что в исследуемых образцах железосодержащих стекол образуются агломераты магнитной фазы, размер которых зависит от концентрации оксида железа в исходной шихте стекла.
  2. Выявлено, что допирование двухфазных щелочно-боросиликатных стекол оксидом железа (III) приводит к формированию наночастиц магнетита, которое в случае образцов с 15 % и 25 % содержанием Fe2O3 сопровождается образованием метастабильной при обычных условиях фазы – -Fe2O3. Определены дифракционные размеры наночастиц магнетита и -Fe2O3.
  3. Впервые исследованы магнитные свойства двухфазных и пористых железосодержащих стекол, определены значения и коэффициенты магнитострикции для стекол Fe20 MIP, поры которых заполнены KNO3.
  4. Получены температурные зависимости диэлектрической проницаемости и удельной проводимости двухфазных и пористых железосодержащих стекол, изучено влияние концентрации Fe2O3 на диэлектрические свойства двухфазных стекол.
  5. Показано, что DC-проводимость двухфазного стекла, содержащего 20 % оксида железа (III) и двух пористых магнитных матриц на его основе описывается законом Аррениуса с энергиями активации 1,2 ± 0,1 эВ для макропористого, 1,1 ± 0,1 эВ для микропористого и 1,0 ± 0,1 эВ для двухфазного стекла.
  6. Исследованы первые образцы нанокомпозитных материалов с сосуществующими магнитным и сегнетоэлектрическим упорядочениями и получены первые данных об их диэлектрическом отклике, в том числе и в магнитных полях.
  7. Впервые получены данные о влиянии магнитного поля на температурную зависимость параметра порядка для нитрита натрия, внедренного в магнитные пористые стекла.

Научная и практическая значимость работы. Изложенные в диссертации результаты представляют интерес с точки зрения физики нанокомпозитных материалов и могут быть использованы при разработке новых материалов, сочетающих в себе взаимодействующие пространственно разделенные сегнетоэлектрическую и магнитную подсистемы.

На защиту выносятся следующие основные положения:

  1. Рост концентрации оксида железа (III) (Fe2O3) в исходной шихте стекла приводит к увеличению размера железосодержащих агломератов (кластеров).
  2. Нелинейная зависимость дифракционного размера наночастиц магнетита от процентного содержания Fe2O3 во всех исследованных образцах двухфазных железосодержащих стеклах.


  3. Дефектность тетраэдрических позиций железа в наночастицах магнетита в пористых стеклах Fe20 MIP и Fe20 MAP.
  4. Существование магнитных свойств в двухфазных и пористых железосодержащих стеклах и определение величин соответствующих коэрцитивных полей.
  5. Самоорганизация наночастиц магнетита в железосодержащие магнитные агломераты.
  6. Термоактивационная природа проводимости в железосодержащих стеклах.
  7. Установление экспериментальных фактов влияния магнитного поля на температурные зависимости сегнетоэлектрического параметра порядка в магнитных нанокомпозитах с нитритом натрия и влияния магнетита на диэлектрическую проницаемость нанокомпозитов с внедренными сегнетоэлектриками при низких температурах.

Достоверность результатов, полученных в диссертационной работе, определяется комплексным использованием различных экспериментальных методик, включая атомно-силовую микроскопию, диэлектрическую спектроскопию, дифракцию рентгеновских лучей, исследование магнитных свойств с помощью СКВИД и вибрационного магнитометра, и дифференциальную сканирующую калориметрию, самосогласованностью результатов, полученных различными методами, и использованием современных средств анализа экспериментальных данных. Полученные результаты соответствуют существующим теоретическим представлениям и экспериментальным результатам, известным для обычных ЩБС.

Апробация работы. Основные положения и результаты работы докладывались и обсуждались на научных семинарах, всероссийских и международных конференциях, в том числе: на 39 Международной научно-практической конференции «Неделя науки СПбГПУ», 2010г., на 45-ой Школе ПИЯФ по физике конденсированного состояния (ФКС-2011), на 10-ом Международном семинаре «Пористые стекла – специальные стекла» PGL’2011, на Международной конференции «Актуальные проблемы физики твердого тела» (ФТТ-2011), 2011 г., на 11-ом Международном симпозиуме по сегнетоэлектрикам и наноструктурам (International Symposia on Ferroic Domains and Micro- to Nanoscopic Structures – ISFD-11-RCBJSF), 2012 г., на 7-ом Международном Семинаре по физике сегнетоэлектриков (The Seventh Seminar on Ferroelastic Physics), 2012 г., на Международной конференции «Широкополосная диэлектрическая спектроскопия и ее применения» (BDS 2012), 2012 г., на Международной конференции по анализу дифракционных данных (International Conference "Analysis of Diffraction Data in Real Space" (ADD2013)), 2013

Публикации. Материалы диссертации опубликованы в 12 печатных работах, из них 5 - статьи в рецензируемых журналах [1–5] и 7 тезисов докладов [6–12].

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Описанные в диссертации экспериментальные исследования проводились совместно с соавторами, обработка экспериментальных данных проведена автором. Автор внес значительный вклад в написание статей, раскрывающих содержание работы.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, заключения и библиографического списка. Общий объем диссертации 124 страницы, включая 46 рисунков и 3 таблицы. Список литературы включает 134 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении дано обоснование актуальности темы диссертации, определена цель работы, обоснованы научные новизна и значимость, а также практическая ценность работы, достоверность результатов и сформулированы основные положения, выносимые на защиту. Содержатся сведения об апробации работы. Кратко изложено содержание диссертации.

Первая глава - обзор литературы, в котором описываются современные подходы к созданию новых электронных устройств на основе магнитоэлектрических материалов. Обосновывается перспективность использования пористых магнитных матриц на основе двухфазных стекол для создания объемных нанокомпозитных магнитоэлектрических материалов. Описываются факторы и процессы, приводящие к образованию двухкаркасной или капельной структуры в многофазных стеклах, методы изготовления пористых матриц (стекол) и структурные различия между микропористыми и макропористыми матрицами. Подробно рассматриваются способы заполнения пористых матриц в зависимости от свойств внедряемого вещества: заполнение из расплава, если вещество хорошо смачивает поверхность пор, заполнение из расплава под давлением для заполнения матрицы несмачивающим веществом и химический синтез вещества из раствора или газового соединения внутри порового пространства. Представлен обзор работ, посвященных влиянию условий ограниченной геометрии, создаваемых пористой структурой, на свойства магнетиков и сегнетоэлектриков, в частности на температуру и род фазовых переходов. Приведены данные исследований структурных особенностей и свойств различных многокомпонентных стекол, содержащих оксид железа (III) в исходной шихте.

Во второй главе представлены краткая характеристика исследуемых образцов двухфазных и пористых железосодержащих стекол, описание экспериментальных методик, используемых в работе и методов подготовки образцов к измерениям. Исследования морфологии проводились при помощи атомно-силовой микроскопии, для определения кристаллической фазы оксида железа в составе стекла использовался метод рентгеновской дифракции. Исследования температурных зависимостей диэлектрической проницаемости и удельной проводимости были получены при помощи широкополосного диэлектрического спектрометра Novocontrol BDS 80, возможности которого позволяют проводить измерения в температурном диапазоне 160 – 400 C и при частотах от 3 мкГц до 20 МГц. Для исследования магнитных свойств двухфазных и пористых железосодержащих стекол применялись следующие методики:

  • магнитно-силовая микроскопия. Измерения проводились в магнитных полях от -1000 Э до 4000 Э при температуре 4 К;
  • вибрационная магнитометрия. В случае двухфазного железосодержащего стекла измерения проводились при температуре 4 К в магнитных полях -140000–140000 Э, для макропористого стекла - при комнатной температуре и в магнитных полях -10000–10000 Э;
  • СКВИД. Температурная зависимость намагниченности микропористого магнитного стекла снималась в два прохода: первый проход – охлаждение в нулевом магнитном поле до 5 К с последующим нагревом до 300 К в измерительном поле 100 Э, второй проход – охлаждение в измерительном магнитном поле.
  • Дифракция тепловых нейтронов. Исследованы температурная и полевая зависимости поведения параметра порядка для магнитных матриц Fe20 MIP и Fe20 MAP, содержащих внедренный сегнетоэлектрик NaNO2.

Третья глава состоит из четырех разделов и посвящена результатам исследования двухфазных непористых железосодержащих стекол следующих составов: Fe25 – 50 % SiO2–20 % B2O3–5 % Na2O–25 % Fe2O3, Fe20 – 60 % SiO2–15 % B2O3–5 % Na2O–20 % Fe2O3, Fe15 – 60 % SiO2–20 % B2O3–5 % Na2O–15 % Fe2O3.

Морфология двухфазных железосодержащих стекол

В разделе приводятся результаты исследования топографии (методом атомно-силовой микроскопии) двухфазных железосодержащих стекол с различным содержанием оксида железа (III). Полученные данные согласуются с данными исследования «объемной» структуры железосодержащих стекол, полученными в ИХС РАН методом просвечивающей электронной микроскопии [1,2].

Исследования показали, что в результате допирования оксидом железа (III) в двухфазных щелочно-боросиликатных стеклах наряду с двухкаркасной структурой (

Рисунок 1 а) образуются агломераты железосодержащей фазы (Рисунок 1 б), размер и плотность которых зависят от концентрации Fe2O3 в исходной шихте. Анализ данных атомно-силовой микроскопии (АСМ) показал, что в стекле Fe25 (25 % Fe2O3) образуются агломераты средним размером 940 ± 10 нм и 500 ± 10 нм, в стеклах Fe20 (20 % Fe2O3) – 450 ± 10 нм, в стеклах Fe15 (15 % Fe2O3) – 230 ± 10 нм. Таким образом можно сделать вывод, что в исследуемых двухфазных стеклах сосуществуют агломераты железосодержащей фазы и двухкаркасная структура, необходимая для изготовления пористых матриц.

Магнитные свойства

Анализ данных магнитно-силовой микроскопии показал, что все железосодержащие агломераты обладают магнитными свойствами. В отсутствии внешнего магнитного поля каждому агломерату соответствует несколько нанообластей с разнонаправленными магнитными моментами.

При приложении магнитного поля 4000 Э магнитные моменты всех нанообластей сориентировались по направлению поля (образец Fe25). Для оценки коэрцитивного поля стекла Fe25 была проведена серия измерений распределения намагниченности участка образца, содержащего три агломерата в магнитных полях 0 - 4000 Э и от 4000 Э до -1000 Э. Определенное таким образом значение коэрцитивного поля составило 750–900 Э. Измерения во внешнем магнитном поле проводились при температуре 4 К.

Полевая зависимость намагниченности двухфазного стекла, допированного 20 % Fe2O3 (Fe20) была получена при помощи вибрационного магнитометра при температуре 4 К (Рисунок 2). На рисунке явно виден гистерезис, т.е. образец Fe20 обладает остаточной намагниченностью и коэрцитивным полем 870 Э. Таким образом, оценки коэрцитивных полей двух образцов, полученные разными методами, практически совпадают, т.е. их значения для двухфазных железосодержащих стекол не зависят от концентрации оксида железа (III) в исходной шихте.

Анализ кристаллической структуры

Профильный анализ данных рентгеновской дифракции показал, что во всех образцах двухфазных железосодержащих стекол преобладает кристаллическая фаза магнетита (Fe3O4), однако в случае образцов с 15 % и 25 % содержанием Fe2O3 в исходной шихте (Fe15 и Fe25 соответственно) наблюдается образование дополнительной кристаллической фазы -Fe2O3. Для образца Fe15 содержание -Fe2O3 составило 23 ± 6 масс. %, а Fe3O4 – 77 ± 6 масс. %. При помощи формулы Холла-Вильямса, учитывающей влияние размерного эффекта и упругих напряжений на уширение дифракционного пика, были определены дифракционные размеры частиц магнетита для каждого образца и -Fe2O3 для образца Fe15. В случае стекла Fe15 размер кристаллитов Fe3O4 составил 161 ± 9 , -фазы оксида железа (III) – 208 ± 10 , для Fe20 размер частиц магнетита составил 150 ± 5 , а для Fe25 – 454 ± 6 .

Диэлектрический отклик



Pages:   || 2 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.