авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

Курчатовский институт столяревский анатолий яковлевич хемотермические технологии аккумулирования энергии ядерных энергоисточников

-- [ Страница 1 ] --

РОССИЙСКИЙ НАУЧНЫЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

СТОЛЯРЕВСКИЙ АНАТОЛИЙ ЯКОВЛЕВИЧ

Хемотермические технологии аккумулирования энергии ядерных энергоисточников

Специальность: 05.14.03 Ядерные энергетические установки,

включая проектирование, эксплуатацию

и вывод из эксплуатации

АВТОРЕФЕРАТ

диссертации на соискание научной степени доктора технических наук

МОСКВА, 2009 г.

Работа выполнена в Российском научном центре «Курчатовский институт»

Официальные оппоненты:

доктор технических наук,

Сметанников Владимир Петрович

доктор физико-математических наук,

Малышенко Станислав Петрович

доктор физико-математических наук,

Гагаринский Андрей Юрьевич

Ведущая организация: ОАО «ОКБМ имени И.И. Африкантова».

Защита состоится «____»______________________ 2009 г. в _____часов на заседании диссертационного совета Д520.009.06 при РНЦ «Курчатовский институт» по адресу Москва, пл. И.В.Курчатова.

С диссертацией можно ознакомиться в библиотеке РНЦ «Курчатовский институт».

Автореферат разослан «____»_______________2009 г.

Ученый секретарь

Специализированного Совета

д.т.н., профессор В.Г. Мадеев

Актуальность темы. Дальнейшее развитие ядерных энерготехнологических установок предполагает создание совершенных систем производства энергоносителей на основе хемотермических технологий аккумулирования тепловой энергии ядерных энергоисточников, условно разделённых на два класса: к первому относятся хемотермические технологии преобразования тепловой энергии высокотемпературных ЯЭИ для производства из воды и метана водорода и содержащих его энергоносителей с последующим их использованием для энергоёмких процессов и хемотермического транспорта тепловой энергии, ко второму классу можно отнести хемотермические энерготехнологии в составе ЯЭИ различного типа для аккумулирования и передачи тепловой энергии с помощью термохимических материалов и возможностью преобразования этих материалов в электроэнергию пиковой нагрузки.

Диссертационная работа направлена на повышение эффективности ядерных энерготехнологических установок, надежности их функционирования, обеспечение требований энергосистем и промышленности за счет использования наиболее эффективных и экономичных хемотермических систем и технологий аккумулирования энергии ядерных реакторов и разработки наиболее совершенных схем и параметров таких систем и технических решений для их реализации.

Цель работы заключалась в научном обосновании технических разработок хемотермических систем и технологий аккумулирования энергии ядерных реакторов, имеющих существенное значение для расширения сферы применения и повышения эффективности ядерных энергоисточников на базе производства водорода, энергообеспечения энергоёмких промышленных потребителей и транспорта, а также работы в разуплотнённых графиках электрической нагрузки.

Для ее достижения были разработаны экспериментальные и расчётные методы определения термодинамических и кинетических параметров, энергетической эффективности отдельных элементов хемотермической технологии и энерготехнологической системы в целом.





Научная новизна. Для системного решения задач исследования автором создана и впервые представлена концепция энерготехнологических систем аккумулирования и транспорта энергии с применением хемотермических технологий, позволяющая существенно поднять эффективность использования ЯЭИ.

  • Автором впервые представлены теоретические положения по выбору эффективной хемотермической технологии с применением адиабатической паровой конверсии метана, также путей её практического применения в энерготехнологических системах.
  • Впервые предложены и обоснованы по технологии и выбору оборудования хемотермических установок теплоэнергоаккумулирования, в том числе с применением в качестве рабочего тела диоксида углерода сверхкритических параметров с сорбционной и криогенной системой запасения рабочего тела, защищённые патентами на изобретения.
  • Впервые приведено расчётно-экспериментальное обоснование предложенной автором системы передачи тепла от ВТГР к технологическому контуру с применением технологического пара, перегреваемого вместе с водородосодержащей средой в первом контуре, выполненное применительно к разработанной схеме передачи тепла для установки МГР-Т мощностью 600 МВт (тепл) с учётом выявленных факторов радиационной и пожаровзрывобезопасности, найдены и рекомендованы технологические решения по их обеспечению применительно к атомно-водородному комплексу производительностью более 400 тыс. т водорода/год.

Практическое значение работы. Разработанные в диссертационной работе новые положения систем производства водорода и хемотермического аккумулирования энергии ядерных энергоисточников, на основе которых впервые представлен выбор эффективной технологии производства водорода с помощью высокотемпературного ЯЭИ, позволяют провести комплексную разработку и создание крупномасштабного производства водорода, повысить эффективность создаваемых новых образцов ЯЭИ, усовершенствовать и расширить применение ядерно-энергетических объектов отрасли, повысить качественные результаты разработок.

Полученные автором решения задач аккумулирования и транспорта тепловой энергии и моделирования устройств для их осуществления позволяют существенно сократить объем экспериментальных исследований или полностью их исключить, что дает возможность значительно снизить затраты материальных ресурсов, денежных средств и времени на отработку изделий. Кроме этого, отдельные теоретические результаты являются определенным вкладом в общую теорию таких наук, как термодинамика и теплофизика ядерных энергоустановок.

Разработанные и запатентованные схемы, параметры, составы рабочих тел и проектные решения по технологии и техническим средствам электро- и теплогенерации с ЯЭИ различного типа на основе высокоэффективных аккумулирующих углекислотных циклов высокого давления с сорбционным накоплением позволяют поднять качественные показатели известных устройств на основе низкотемпературных ЯЭИ, повысить их эффективность и энерговыработку. Идеи некоторых оригинальных устройств могут быть использованы при проектировании новых технических систем машиностроения.

Результаты экспериментальных исследований по водородопроницаемости и равновесию парогазовых смесей, явлений и процессов, приведенные в работе, представляют практический интерес при проектировании новых и модернизации известных устройств и механизмов в энерготехнологических системах, позволяют уточнить представление о протекающих процессах, сопутствующих процессам преобразования тепловой энергии в химические энергоносители.

Автор выносит на защиту:

  1. Системный анализ отечественных и зарубежных разработок систем производства водорода и хемотермического аккумулирования энергии ядерных энергоисточников, на основе которых впервые представлен выбор эффективной технологии производства водорода с помощью высокотемпературного ЯЭИ, позволяющей провести комплексную разработку и создание крупномасштабного производства водорода на основе предложенной и обоснованной автором технологии адиабатической паровой конверсии метана, также путей её практического применения в энерготехнологических системах.
  2. Созданные и защищенные авторскими свидетельствами и патентами новые устройства и способы хемотермического аккумулирования энергии ядерных энергоустановок, позволяющие существенно расширить сферу применения и поднять эффективность использования ЯЭИ.
  3. Разработанные теоретические положения: концепция атомно-водородной энергетики, математические модели схем и параметров ядерных энерготехнологических установок, методические подходы к определению эффективности комбинированных ядерно-энергетических систем производства тепловой и электрической энергии с неравномерными графиками их потребления, предложенные автором решения по технологии и выбору оборудования хемотермических установок теплоэнергоаккумулирования с применением в качестве рабочего тела диоксида углерода сверхкритических параметров с сорбционной и криогенной системой запасения рабочего тела.
  4. Расчётно-экспериментальное обоснование предложенной автором системы передачи тепла от ВТГР к технологическому контуру с применением технологического пара, перегреваемого вместе с водородосодержащей средой в первом контуре, выполненное применительно к разработанной схеме передачи тепла для установки МГР-Т мощностью 600 МВт (тепл) с учётом выявленных факторов радиационной и пожаровзрывобезопасности, найдены и рекомендованы технологические решения по их обеспечению применительно к атомно-водородному комплексу производительностью более 400 тыс. т водорода/год.

Личное участие автора состоит в постановке и организации всех исследований, участии в создании экспериментальных установок, разработке методик и участии в проведении экспериментов, обработке, обсуждении и изложении результатов, разработке технических решений. Ряд вопросов изложенных в диссертации, разработан в соавторстве с сотрудниками РНЦ «Курчатовский Институт».

Публикации. Основное содержание диссертации отражено в двух монографиях, в статьях опубликованных в журналах “Атомная энергия”, «Наука и техника в газовой промышленности», «Российский химический журнал», «Тяжелое машиностроение», «Теплоэнергетика», «International Scientific Journal for Alternative Energy and Ecology», "Kerntechnik”, "International Journal of Hydrogen Energy”, “Transactions of American Nuclear Society”, в сборнике “Вопросы атомной науки и техники”, в трудах Всероссийских и Международных конференций.

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на Всесоюзных семинарах «Атомно-водородная энергетика и технология» (Москва, 1978-1988 гг.); Международной конференции «50 лет атомной энергетике», Обнинск, 2004 г.; Международных конференциях по водородной энергетике (Москва, 1988; Стамбул, 2005), Международном Форуме «Водородная энергетика для 21 века», Пекин, 2004 г.; Международном симпозиуме «Безопасность и экономика водородного транспорта», г. Саров, Россия, 2003г.; Европейской Ядерной Конференции, Версаль, Франция, 2005 г.; Международных конференциях «Альтернативные источники энергии для транспорта и энергетики больших городов», Москва, 2005 г.; Москва, 2007 г.; Второй Российской научно - технической конференции "Материалы ядерной техники" (МАЯТ-2) 2005 г., Агой (Краснодар. край); Первом Всемирном конгрессе «Альтернативная энергетика и экология», Н.Новгород, 2006 г.; Втором Международном форуме «Водородные технологии для развивающегося мира», Москва, 2008 г.; Конференции Американского ядерного общества, Бостон, 2007 г.; Международном симпозиуме по водородной энергетике, Москва, 2007 г.; Международном семинаре Росатом-Евратом по научно-техническому сотрудничеству в области реакторных технологий, Москва, 2007 г.; IV Международной конференции «Физико-технические проблемы атомной энергетики и промышленности», Томск, 2007 г.; заседании Комитета по энергетике, транспорту и связи Государственной Думы РФ, г.Москва, 2007 г. Полностью работа доложена и обсуждена на заседании Ученого совета Института ядерных реакторов РНЦ «Курчатовский институт». По материалам диссертации опубликовано более 50 работ в отечественных и зарубежных изданиях, список публикаций приведен в конце автореферата.

Структура и объем работы. Диссертация состоит из Предисловия, введения, четырех глав, заключения и списка цитированной литературы. В основных разделах работы рассмотрены технологии конверсии высокотемпературного тепла в высокоэффективные энергоносители (первая глава), технологии аккумулирования энергии ядерных реакторов (вторая глава), системы передачи высокотемпературного тепла (третья глава), сорбционные системы утилизации низкопотенциального тепла (четвертая глава).

Все разделы диссертации связаны между собой единством объектов исследования и целенаправленной систематикой их выбора, определяемой решением поставленных задач, общностью свойств систем обсуждаемых в работе, единой точкой зрения и подхода к объяснению наблюдаемых явлений и единством цели, которой посвящена работа – созданию физических и химических основ для осуществления высокотемпературных процессов с участием хемотермических систем с учетом требований, выдвигаемых при разработке ядерно-энергетических систем для новой технологической базы России. Общий объем диссертации составляет 365 страницы, включая 34 таблиц, 84 рисунков, библиографический список из 90 наименований.

СОДЕРЖАНИЕ РАБОТЫ

В главе 1 (вводной) приведен обзор технологий производства водорода на базе высокотемпературных ЯЭИ.

В разделе 1.1 выполнен анализ показателей электро- и термохимических технологий отечественного и зарубежного производства. Рассмотрены различные схемы выполнения водородного производства, дан анализ потенциала развития и масштабов потребления водорода.

В разделе 1.2 выполнен анализ предлагаемых термохимических методов разложения воды, позволяющий учесть различные факторы, влияющие на их конкурентоспособность. Показана практическая неэффективность применения серно-иодного цикла в ядерно-технологическом комплексе производства водорода.

В разделе 1.3 приведены результаты комплексных исследований по выбору эффективной технологии производства водорода с помощью ядерного энергоисточника, разработана высокоэффективная технология термохимического разложения воды и природного газа в адиабатическом процессе каталитической конверсии.

В разделе 1.4 приведены основные результаты разработки систем на основе адиабатической конверсии метана, определены параметры и схемные решения данной технологии, создана практическая основа по производству различных водородосодержащих продуктов. Применительно к реакторной установке МГР-Т мощностью 600 МВт (тепл) определены технологические решения, схема и параметры процесса производства водорода из воды и природного газа, задачи исследования.

В главе 2 рассмотрены технологические особенности проектирования и эксплуатации систем энергоаккумулирования применительно к ЯЭУ. В начале главы в разделе 2.1 обсуждаются требования, которые необходимо учитывать при проектировании энергоаккумулирующих установок. Проведено комплексное исследование требований и возможностей систем аккумулирования энергии, обеспечивающих увеличение доли АЭС в энергосистемах, показана необходимость создания накопителей энергии с низкими удельными капитальными затратами, суммарная мощность которых для сбалансированности работы энергосистем должна составлять 10-15 % суммарной установленной мощности АЭС и ТЭС.

В разделе 2.2 обобщены результаты разработки ряда схем маневренных АЭУ с высокотемпературными газоохлаждаемыми реакторами, использующими в качестве аккумулятора тепловой энергии замкнутый контур хемотермического преобра­зования и аккумулирования тепловой энергии реактора. В табл. 1 приведены основные параметры (диапазон температу­ры и расчетное изменение энтальпии) возможных хемотермических циклов.

Исследования показали, что такое решение обладает рядом преимуществ по сравнению с известными схемами аккумули­рования: высокой удельной энергоемкостью процессов химической конверсии (50—75 ккал/моль; 1—2 ккал/г запасаемого продукта), на один-два порядка превышающей удельную энергоем­кость фазовых превращений; высоким уровнем освоения процессов и оборудования хими­ческой конверсии в промышленности; простотой хранения аккумулирующего вещества (конверти­рованного газа), неограниченной продолжительностью аккуму­лирования; высоким КПД таких систем (~65-75%), а также эконо­мичностью.

Таблица 1. Возможные хемотермические циклы

• Включая теплоту испарения (конденсации) воды.

Расчетное
Диапазон значение
Замкнутый цикл температуры. Н 0 298.
ккал/моль
(1) СО+3Н2 СН4+Н2О 700—1200 59,8*
(2) 2СО+2Н2 СН4+СО2 700—1200 59,1
(3) С2Н4 +H2 С3Н6 500—750 49,5
(4) С10Н8 +5H2 С10Н18 (5) С2Н4+НС1С2Н5Сl (6) CO+ClCOCl 450—700 420—770 550—1000 75,0 13,4 26,9
(7) so3 +h2oh2so4 600—1000 64,6
(8) Н2О(ж)+h2so4(ж) h2so4.Н2О(ж) 350—400 15


Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |
 

Похожие работы:







 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.