авторефераты диссертаций БЕСПЛАТНАЯ РОССИЙСКАЯ БИБЛИОТЕКА - WWW.DISLIB.RU

АВТОРЕФЕРАТЫ, ДИССЕРТАЦИИ, МОНОГРАФИИ, НАУЧНЫЕ СТАТЬИ, КНИГИ

 
<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:   || 2 | 3 | 4 | 5 |   ...   | 7 |

Научно-методические основы мониторинга взрывоопасности производственных объектов нефтегазовой отрасли

-- [ Страница 1 ] --

На правах рукописи

ТЛЯШЕВА РЕЗЕДА РАФИСОВНА

НАУЧНО-МЕТОДИЧЕСКИЕ ОСНОВЫ МОНИТОРИНГА ВЗРЫВООПАСНОСТИ

ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ НЕФТЕГАЗОВОЙ ОТРАСЛИ

Специальность 05.26.03 – Пожарная и промышленная

безопасность (нефтегазовая отрасль)

А В Т О Р Е Ф Е Р А Т

диссертации на соискание ученой степени

доктора технических наук

У Ф А – 2011

Работа выполнена в Государственном образовательном учреждении

высшего профессионального образования

«Уфимский государственный нефтяной технический университет» (ГОУ ВПО «УГНТУ»)

Научный консультант доктор технических наук, профессор Кузеев Искандер Рустемович
Официальные оппоненты: доктор технических наук, профессор Ларионов Валерий Иванович доктор технических наук, профессор Козлитин Анатолий Мефодьевич доктор технических наук Абдуллин Ленар Рафилевич
Ведущая организация ГУП «Институт проблем транспорта энергоресурсов»

Защита диссертации состоится ______________ года в 10.00 на заседании
диссертационного совета Д 212.289.05 при Уфимском государственном нефтяном
техническом университете по адресу: 450062, Республика Башкортостан, г. Уфа,
ул. Космонавтов, 1.

С диссертацией можно ознакомиться в библиотеке УГНТУ.

Автореферат разослан ______________ 2011 года.

Ученый секретарь совета

доктор технических наук, профессор А.В. Лягов

Общая характеристика работы

Актуальность проблемы

Проблемы безопасности на объектах нефтегазового комплекса имеют особое значение. Они связаны с физико-химическими свойствами углеводородных веществ, приводящими к их возгоранию или взрыву в случае аварий. Авариям предприятиях нефтегазовой отрасли характерны большие объемы выброса взрывопожароопасных веществ, образующиеся облака топливно-воздушных смесей, разливы нефтепродуктов и, как следствие, крупномасштабные разрушения и повреждения высоконагруженных элементов конструкций. Практика показывает, что полностью исключить аварии и уменьшить до нуля опасность, невозможно. Поэтому техногенные аварии необходимо предупреждать или ослаблять их вредное воздействие путем перехода на новую стратегию обеспечения безопасности, основанную на принципах их прогнозирования и предупреждения.

В связи с этим особую актуальность приобретает создание научно обоснованных методов мониторинга взрывоопасности, основанных на математическом моделировании аварийных ситуаций, создание устройств, способных защитить объекты технологических установок от влияния ударной волны.

Исследованиям в области моделирования аварийных ситуаций, связанных с воздействием взрыва на объекты, посвящены работы крупных ученых: Абросимова А.А., Белова П.Г., Бесчастнова М.В., Бирбраера А.Н., Гельфанда Б.E., Едигарова А.С., Каца М.И., Козлитина А.М., Котляревского В.А., Кузеева И.Р., Ларионова В.И., Лисанова М.В., Садовского М.А., Сафонова В.С., Одишария Г.Э., Корольченко А.Я., Шаталова А.А., Ханухова Х.М., Таубкина И.С., Хусниярова М.Х. и ряда других.



Значительный вклад в развитие теории ударных и детонационных волн внесли крупные ученые и специалисты: Гриб А.А., Жуге Е., Зельдович Я.Б., Ландау Л.Д., Михельсон А.В., Орленко Л.П., Селиванов В.В., Соловьев В.С., Станюкевич К.П., Харитон Ю.Б., Чепмен Д.Л.

Теория динамики железобетонных конструкций получила развитие в трудах крупных российских ученых: Бакирова Р.О., Белоброва И.К., Белова Н.Н., Жарницкого В.И., Забегаева А.В., Карпенко Н.И., Котляревского В.А., Майорова В.И., Плевкова В.С., Попова Г.И., Попова Н.Н., Расторгуева Б.С., Саргсяна А.В., Яшина А.В. и др.

Однако, на сегодняшний день, остаются слабо освещенными вопросы, относящиеся к моделированию аварийных ситуаций, практическому расчету последствий аварий с учетом динамических факторов, влияющих на прочность и устойчивость конструкций под действием взрыва. Появление и развитие новых программных комплексов, мощной компьютерной техники позволяет существенно продвинуться в более детальном изучении рассматриваемой проблемы с учетом многофакторного нагружения и детализации геометрии объекта.

В связи с этим следует признать актуальным и отвечающим потребностям промышленной практики создание комплексной методологии оценки взрывоопасности и взрывоустойчивости объектов нефтегазовой отрасли с применением численных методов, геоинформационных технологий и кратномасштабного вейвлет–анализа.

Актуальность и важность представленных исследований подтверждается участием автора в выполнении научно-технических программ Академии наук Республики Башкортостан (АНРБ) «Проблемы машиностроения, конструкционных материалов и технологии» по направлению «Надежность и безопасность технических систем в нефтегазохимическом комплексе», «Критические технологии Республики Башкортостан: физико-математические принципы и технические решения», «Фундаментальные проблемы машиноведения, конструкционных материалов и технологий» по направлению «Повышение уровня безопасности сложных технических систем для переработки углеводородного сырья».

Цель работы – повышение промышленной безопасности опасных производственных объектов (ОПО) и защищенности обслуживающего персонала объектов технологических установок предприятий нефтегазовой отрасли от воздействия ударной волны путем развития теории и методов комплексной оценки взрывоопасности сложных технических систем на основе геоинформационных технологий, вейвлет-анализа и численных методов.

Для достижения поставленных целей были сформулированы следующие основные задачи:

  • анализ современных методов прогнозирования последствий аварий со взрывами и повышения безопасности нефтегазового комплекса;
  • создать методические основы разработки специализированной географической информационной системы (ГИС) для моделирования зон потенциальной опасности при взрывах;
  • разработать методологию комплексной оценки взрывоопасности на объектах нефтегазового комплекса с применением ГИС-технологий и вейвлет-анализа, численных методов;
  • разработать методологию взрывоустойчивости объектов нефтегазового комплекса;
  • произвести подбор защитного устройства от влияния ударной волны.

Методы решения поставленных задач

В основу теоретических исследований были положены методы и концепции численных методов и вейвлет-анализа.

Научная новизна результатов работы

1. Научно обоснован алгоритм формирования взрывоопасных облаков, основанный на системе трехмерного параметрического моделирования и методе конечных объемов, учитывающий зоны скопления взрывоопасных веществ, характер движения атмосферных потоков, рельеф местности, взаиморасположение аппаратов. Для этого введены объемные (поверхностные) коэффициенты зоны застоя, характеризующие отношение значения объема зон застоя в рабочей зоне к разнице общего объема рабочей зоны и объема оборудования, зданий и сооружений, находящихся в ней для заданного направления ветра и получены их количественные показатели для промышленного объекта.

2. Впервые разработан метод оценки зон потенциальной взрывоопасности объектов с использованием геоинформационной системы и метода кратномасштабного вейвлет-анализа. С учетом предложенных критериев выбора масштаба вейвлет-анализа, складывающихся из количества незначащих опасных областей, критериев оценки результатов вейвлет-анализа, складывающихся из количества наложений зон опасности, определяется на вейвлет-преобразованном изображении область опасности соответствующего цвета, что позволяет оптимально расположить технологическое оборудование и обеспечить защищенность оборудования.

3. Разработан метод оценки взрывоустойчивости многоэлементных сложных технических систем, таких как аппараты колонного типа, технологические трубопроводы в полной трехмерной постановке с учетом многофакторного нагружения, и динамического поведения от воздействия фронта ударной волны.

Впервые дана количественная оценка основным факторам, влияющим на устойчивость аппаратов колонного типа, определены предельные состояния элементов конструкции и получено изменение критических параметров в зависимости от динамического воздействия взрывной волны с учетом свойств грунта. Построены номограммы зависимости устойчивости колонного аппарата от расстояния до эпицентра взрыва и значения тротилового эквивалента.4. Методами имитационного моделирования поведения действующих трубопроводов в поле ударной волны показано влияние направления удара на характер деформирования и произведена классификация трубопроводных систем, в основе которой лежит категорирование систем по уровню напряженно-деформированного состояния (НДС) в опасных сечениях.

В результате моделирования выявлено, что распределение напряжений в горизонтальных и вертикальных технологических трубопроводах в результате воздействия взрывной волны носит полиэкстремальный характер, при этом в зависимости от конкретной конфигурации трубопровода можно идентифицировать наиболее вероятные зоны разрушения

5. Разработаны способ защиты объектов, мест сосредоточения обслуживающего персонала с помощью защитных устройств (патент № 2307312) и конструктивные параметры, типы конструкции и расположения защитного устройства. Создана конечно-элементная модель взаимодействия взрывной волны с защитным устройством, при этом критерием оптимизации является минимальное значение избыточного давления во фронте ударной волны перед объектом.

На защиту выносятся:

1. Концепция и методы комплексной оценки взрывоопасности сложных технических систем, разработанные с учетом специфики опасных производственных объектов нефтегазовой отрасли;

2. Конечно-элементная математическая модель и метод идентификации взрывоопасности объектов нефтегазового комплекса;

3. Метод формирования и рассеивания взрывоопасных облаков с использованием конечно-разностного метода,;

4. Метод оценки зон опасностей оборудования установки, с использованием геоинформационных технологии и вейвлет-анализа;

5. Метод оценки взрывоустойчивости технологического оборудования, пространственные железобетонные конструкции к действию ударной волны (динамических нагрузок) с использованием кончно-элементного анализа;

6. Метод оптимизации безопасного расположения оборудования технологических установок с учетом устойчивости оборудования к действию ударной волны и монтажных расстояний.

Практическая ценность результатов работы:

  1. Разработано устройство для защиты конструкций от ударной волны, позволяющее снизить воздействие поражающих факторов на персонал и повысить взрывоустойчивость объектов при возникновении аварии (патент № 2326342.).
  2. Методология оценки взрывоустойчивости аппаратов колонного типа, технологических трубопроводов предприятий нефтегазовой отрасли при возникновении аварийных ситуаций используется в работе инжиниринговой компании «ТЕСИС» для разработки новых систем проектирования и инженерного анализа.
  3. Модель оценки напряженно-деформированного состояния аппаратов колонного типа с трубопроводной обвязкой при возникновении аварийных ситуаций используется в ОАО «Салаватнефтеоргсинтез» для разработки проектной документации на расширение, реконструкцию, техническое перевооружение сосудов и аппаратов, работающих под давлением, а также для инженерного анализа их напряженно-деформированного состояния.
  4. Методология комплексной оценки взрывоопасности на объектах нефтегазового комплекса с применением ГИС-технологий, вейвлет-анализа и численных методов использовались в ООО «Техпроект» при разработке деклараций промышленной безопасности, планов локализации и ликвидации аварийных ситуаций, паспортов безопасности для количественной оценки взрывоопасности объектов предприятий нефтегазовой отрасли.
  5. Предложенный «Метод расчета динамического поведения объекта с применением программного комплекса ABAQUS» используется при проведении занятий в УГНТУ по дисциплине «Принципы и методы конструирования и проектирования оборудования» для магистрантов направления 150400 «Технологические машины и оборудование» по программе 551830 «Теоретические основы проектирования оборудования нефтеперерабатывающих, нефтехимических и химических производств» с целью формирования базы знаний по разработке проектно-конструкторской документации (ПКД) на различные виды промышленного строительства установок предприятий нефтегазовой отрасли.

Достоверность проведенных исследований обеспечивается: используемой в ней нормативной базы; соответствием результатов расчета изначально наложенным ограничениям; обоснованными современными расчетными методами. Вычислительные эксперименты прекращались при достижении заранее заданной точности.





Достоверность результатов основана на применении хорошо зарекомендовавших себя методов исследования, а также высокой степени соответствия результатов математического моделирования и практических экспериментов. Программный комплекс ABAQUS удовлетворяет международным стандартам качества ISO-9001 и NQA (Nuclear Quality Assurance). Программный комплекс FlowVision сертифицирован на соответствие Госстандарту России N POCC RU.ME20.H01223 как система для моделирования жидкости и газа.

Апробация результатов работы. Основные положения и результаты диссертационной работы докладывались на международных, всероссийских, региональных, вузовских научно-технических конференциях и тематических семинарах, в том числе Республиканской научно-технической конференции «Роль технической диагностики в обеспечении промышленной и экологической безопасности на объектах нефтегазохимического комплекса» (г. Уфа, 1995 г.); II Всероссийской научно-технической конференции «Техническая диагностика, промышленная и экологическая безопасность» (г. Уфа, 1996 г.); научно-технических конференциях студентов, аспирантов и молодых ученых (г. Уфа, 47-ой –1996 г., 49-ой – 1998 г.; 50-ой – 1999 г., 55-ой – 2004г., 56-ой – 2005 г.); V-ой Международной научной конференции «Методы кибернетики химико-технологических процессов (КХТП-V-99)» (г. Уфа, 1999 г.); III Всероссийской научно-практической конференции «Проблемы прогнозирования, предупреждения и ликвидации последствий чрезвычайных ситуаций» (г. Уфа, 2002 г.); Второй всероссийской научной ИНТЕРНЕТ-конференции «Интеграция науки и высшего образования в области био- и органической химии и механики многофазных систем» (г. Уфа, 2003 г.); IX международной научно-технической конференции «Проблемы строительного комплекса России» (г. Уфа, 2005 г.); II Межотраслевой научно-практической конференции «Проблемы совершенствования дополнительного профессионального и соцгуманитарного образования специалистов топливно-энергетического комплекса» (г. Уфа, 2005 г.); Всероссийской студенческой научно-технической конференции «Интенсификация тепло-массообменных процессов, промышленная безопасность и экология» (г. Казань, 2005 г.); Третьей всероссийской научной ИНТЕРНЕТ-конференции «Интеграция науки и высшего образования в области био- и органической химии и механики многофазных систем» (г. Уфа, 2005 г.); Международной научно-практической конференции «Нефтегазопереработка и нефтехимия-2005» (г. Уфа, 2005 г.); VI Международном междисциплинарном симпозиуме «Фракталы и прикладная синергетика» (г. Москва, 2005 г.); Российской научно-технической конференции «Мавлютовские чтения» (г. Уфа, 2006 г.); II Научно-практической конференции Научного промышленного союза «Риском» «Техническое регулирование. Управление рисками, промышленная безопасность, контроль и мониторинг» (г. Москва, 2006 г.); научно-практической конференции «Промышленная безопасность на взрывопожароопасных и химически опасных производственных объектах. Технический надзор, диагностика и экспертиза» (г. Уфа, 2007 г.); Всероссийском конкурсе инновационных проектов студентов, аспирантов и молодых ученых вузов Российской Федерации «Обеспечение промышленной безопасности на взрывопожароопасных и химически опасных производственных объектах» (г. Уфа, 2007 г.); 4-ой Международной научно-практической конференции «Инженерные системы-2010» (г. Москва, 2010 г.).

Публикации. Основные результаты диссертационной работы опубликованы в 54 научных трудах, в том числе в 1 монографии и 21 статьях ведущих рецензируемых научных журналах, рекомендованном ВАК Министерства образования и науки РФ, получены 2 патента и 1 авторское свидетельство.

Структура и объем работы. Диссертационная работа состоит из введения, семи глав, основных выводов, списка использованной литературы, включающего 232 наименования, четырех приложений. Работа изложена на 432 страницах, содержит 88 таблиц, 142 рисунка.

Краткое содержание работы

Во введении обоснована актуальность проблемы, сформулированы ее цель и основные задачи, обозначены основные положения, выносимые на защиту, показаны научная новизна и практическая ценность результатов работы. Проведен обзор опубликованных работ по известным методам оценки и обоснования промышленной безопасности опасных производственных объектов.

В первой главе приведены оценка состояния промышленной безопасности предприятий нефтегазовой отрасли, анализ причин возникновения аварий, статистическая информация по техногенным авариям, характерные особенности взрывных явлений, классификация взрывных процессов, оценка устойчивости объекта к воздействию ударной волны, показаны нагрузки на здания, сооружения, технологическое оборудование от степени воздействия волны и закон ее изменения во времени.

Описано фактическое состояние объектов нефтегазовой отрасли и дальнейшие перспективы его развития.

Приведенная статистическая информация по авариям, произошедшим на объектах нефтегазового комплекса, свидетельствует о том, что количество аварийных ситуаций имеет стабильную динамику и нередко сопровождается травматизмом со смертельным исходом.

Показано, что состояние основных фондов предприятий нефтегазового комплекса в сочетании с веществами, участвующими в технологических процессах, свойственными для таких предприятий, может привести к возникновению аварийных ситуаций, основными опасностями которых являются пожары, взрывы и токсическое заражение территории объектов.



Pages:   || 2 | 3 | 4 | 5 |   ...   | 7 |
 

Похожие работы:










 
© 2013 www.dislib.ru - «Авторефераты диссертаций - бесплатно»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.